
1 / 125

An introduction to recent fast algorithms for structured matrices

Shivkumar Chandrasekaran

shiv@ucsb.edu

Nithin Govindarajan

ngovindarajan@ucsb.edu Kristen Lessel

klessel@ucsb.edu

Abhejit Rajagopal

abhejit@ucsb.edu

July 1, 2018

mailto:shiv@ucsb.edu
mailto:ngovindarajan@ucsb.edu
mailto:klessel@ucsb.edu
mailto:abhejit@ucsb.edu

Introduction

2 / 125

We will be primarily interested in the following questions.

◻ If A is a real square n-by-n matrix (A ∈ Rn×n) and x is a column vector
(x ∈ Rn) how quickly can we compute:

– Ax?
– A−1x?

◻ The naive algorithms for the above two problems require O(n2) and
O(n3) operations respectively.

◻ Strassen-style [9] algorithms can improve the latter to O(n2.3⋯) but are
impractical.

◻ If there is more structure in the matrix A, can we do better?

Outline of the Talk

3 / 125

Examples of structured matrices

Strassen-style algorithms

FFT and Toeplitz

Fast classical polynomial arithmetic

Displacement structure

Low rank structure

Sequentially Semi-Separable Representations

Hierarchically semi-separable representations

Concluding remarks

Thank you

4 / 125

Examples of structured matrices

Toeplitz & Vandermonde
Cauchy & Banded
Generalizations
More questions

Toeplitz & Vandermonde

5 / 125

◻ Toeplitz matrices:
⎡⎢⎢⎢⎢⎢⎢⎢⎣

t0 t1 t2 ⋯
t−1 t0 t1 t2 ⋯
t−2 t−1 t0 t1 t2 ⋯
⋮ ⋱ ⋱ ⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎦
◻ Vandermonde matrices:

⎡⎢⎢⎢⎢⎢⎣
1 x0 x20 x30 ⋯
1 x1 x21 x31 ⋯
⋮ ⋮ ⋮ ⋮

⎤⎥⎥⎥⎥⎥⎦

Cauchy & Banded

6 / 125

◻ Cauchy matrices: ⎡⎢⎢⎢⎢⎢⎣

1
x0−y0

1
x0−y1

1
x0−y2

⋯
1

x1−y0
1

x1−y1
1

x1−y2
⋯

⋮ ⋮ ⋮

⎤⎥⎥⎥⎥⎥⎦
◻ Banded matrices: ⎡⎢⎢⎢⎢⎢⎢⎢⎣

a0 b0
c0 a1 b1

c1 a2 ⋱
⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Generalizations

7 / 125

◻ Blocked versions.
◻ Inverses of structured matrices.
◻ Generalizations of Cauchy matrices where the kernel f(x, y) = (x− y)−1, is

replaced by functions f ∶ Rd → R with structured singularities. Example,

f(x, y) = log ∥x − y∥.

◻ Sparse matrices induced from graphs.
◻ Matrices of the type:

A +BC−1D

where A, B, C and D are all structured matrices.
◻ Sums of tensor products of structured matrices.

More questions

8 / 125

◻ Examples required O(n) numbers to represent n × n matrix.
◻ Can we get O(n logk n) algorithms for Ax and A−1x computations?
◻ Can we get O(n logk n) algorithms for Gaussian elimination (LU),

Gram–Schmidt (QR), singular value decomposition (UΣV T) and
eigendecomposition (V ΛV −1)?

◻ Are the algorithms numerically stable?
◻ If not can we get slower, say O(n2) for A−1x, that are numerically stable?

Answers are known only in special cases.

9 / 125

Strassen-style algorithms

Fast matrix multiplication
Trading multiplies for additions
Strassen-type formulas

Fast matrix multiplication

10 / 125

Consider the 2 × 2 block product of 2 matrices:

[A11 A12

A21 A22
] [B11 B12

B21 B22
] = [C11 C12

C21 C22
]

with
Cij = Ai1B1j +Ai2B2j

This requires

◻ 8 block multiplies: O(n3) operations
◻ 4 block adds: O(n2) operations
Strassen’s idea is to trade matrix multiplies for additions, which are far
cheaper, and the use the formula recursively.

Trading multiplies for additions

11 / 125

The right way to look at Strassen is to study the bilinear operator (A,B) → AB.

Consider P ×Q and Q ×R block equi-partitions of A and B respectively. For
some L, suppose

Ml =
⎛
⎝ ∑i∈P,j∈Q

αl
i,jAi,j

⎞
⎠
⎛
⎝ ∑i∈Q,j∈R

βl
i,jBi,j

⎞
⎠ , l = 1, . . . , L,

and

∑
k∈Q

Ai,kBk,j = ∑
l∈L

λl
i,jMl, i = 1, . . . , P, j = 1, . . . ,R,

for scalars αl
i,j , β

l
i,j and λl

i,j .

Strassen-type formulas

12 / 125

◻ If we can find scalars αl
i,j , β

l
i,j and λl

i,j such that these equations hold then
we would have a formula with O(Q(P +R)L) additions and L multiplies.

◻ To be fast we need L < PQR.
◻ There are (Q(P +R) +PR)L variables and (PQR)2 tri-linear equations.
◻ Strassen’s first solution was with P = Q = R = 2 and L = 7.
◻ Finding P , Q, R and L such that there is a solution is non-trivial.
◻ The larger P , Q and R are the less practical would the method be.

We will not pay much attention to Strassen-style acceleration in this tutorial.

13 / 125

FFT and Toeplitz

Discrete Fourier series
FFT
Circulant matrices
FFT diagonalizes circulants
Padding
Toeplitz multiplication
Any sized FFT
Fast Toeplitz back substitution

Discrete Fourier series

14 / 125

For positive integer n let ωn = exp (ι2πn), with ι2 = −1.
The discrete n × n Fourier matrix is defined to be:

Fn =
1√
n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω0⋅0
n ω0⋅1

n ω0⋅2
n . . . ω

0⋅(n−1)
n

ω1⋅0
n ω1⋅1

n ω1⋅2
n . . . ω

1⋅(n−1)
n

ω2⋅0
n ω2⋅1

n ω2⋅2
n . . . ω

2⋅(n−1)
n

⋮ ⋮ ⋮ ⋮
ω
(n−1)⋅0
n ω

(n−1)⋅1
n ω

(n−1)⋅2
n . . . ω

(n−1)⋅(n−1)
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Let

Ωn = diag [ω0
2n ω1

2n ω2
2n ⋯ ωn−1

2n]

FFT

15 / 125

It is easy to check that:

F2n =
1√
2
[I Ωn

I −Ωn
] [Fn 0

0 Fn
]

◻ The recursive application of this idea, when n = 2k, enables the
computation of Fnx in O(n log2 n) operations. This is called the FFT.

◻ Note that F−1n = F
H
n , so F−1n x can also be computed in O(n log2 n)

operations.
◻ The case n ≠ 2k will be covered later.
◻ The FFT [4] is the gateway to many classical fast algorithms.

Circulant matrices

16 / 125

C(c) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0 cn−1 ⋯ ⋯ c2 c1
c1 c0 cn−1 ⋯ ⋯ c2
⋮ c1 ⋱ ⋱ ⋮
⋮ ⋮ ⋱ ⋱ cn−1 ⋮

cn−2 ⋮ c1 c0 cn−1
cn−1 cn−2 ⋯ ⋯ c1 c0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The circular shift down matrix:

Z↺ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ⋯ ⋯ 0 1

1 0 ⋮ 0

0 1 ⋱ ⋮ ⋮
⋮ ⋱ ⋱ 0 0

0 ⋯ 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= C(e1).

FFT diagonalizes circulants

17 / 125

Let
Λn = diag [ω0

n ω1
n ω2

n ⋯ ωn−1
n]

Easy to check that
Z↺ = FnΛnF

H
n

Since

C(c) = n−1

∑
k=0

ck Z
k
↺

it is easy to check that

C(c) = Fn diag (√nFnc) FH
n

Therefore if c ∈ R2k we have O(n log2 n) algorithms for computing C(c)x and
C−1(c)x.

Padding

18 / 125

If the length of c is not an exact power of 2 we can pad it out. Here is a 3 × 3
example of C(c)x = y:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0 c2 c1 0 0 0 c2 c1
c1 c0 c2 c1 0 0 0 c2
c2 c1 c0 c2 c1 0 0 0

0 c2 c1 c0 c2 c1 0 0

0 0 c2 c1 c0 c2 c1 0

0 0 0 c2 c1 c0 c2 c1
c1 0 0 0 c2 c1 c0 c2
c2 c1 0 0 0 c2 c1 c0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0
x1
x2
0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0
y1
y2
⋆
⋆
⋆
⋆
⋆

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Therefore any sized circulant matrix can be multiplied in O(n log2 n)
operations using powers-of-2 FFTs.

Toeplitz multiplication

19 / 125

A Toeplitz matrix can be embedded in a circulant matrix. Here is a 3 × 3
example: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t0 t1 t2 t−2 t−1
t−1 t0 t1 t2 t−2
t−2 t−1 t0 t1 t2
t2 t−2 t−1 t0 t1
t1 t2 t−2 t−1 t0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0
x1
x2
0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0
y1
y2
⋆
⋆

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
◻ Therefore we can compute Tx for any sized Toeplitz matrix T in

O(n log2 n) operations.
◻ Unfortunately this does not yield a technique for the fast computation of

T−1x.

Any sized FFT

20 / 125

Let

Γn = diag

⎡⎢⎢⎢⎢⎢⎢⎢⎣

exp (−ιπ
n
02)

exp (−ιπ
n
12)

⋯
exp (−ιπ

n
(n − 1)2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
It is easy to check that ΓnFnΓn is the Toeplitz matrix:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

exp (−ιπ
n
02) exp (−ιπ

n
12) ⋯ exp (−ιπ

n
(n − 1)2)

exp (−ιπ
n
12) exp (−ιπ

n
02) ⋯ exp (−ιπ

n
(n − 2)2)

⋮ ⋮ ⋮
exp (−ιπ

n
(n − 1)2) exp (−ιπ

n
(n − 2)2) ⋯ exp (−ιπ

n
02)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Therefore we can compute any sized Fnx and FH
n x in O(n log2 n) operations.

Fast Toeplitz back substitution

21 / 125

If T is a upper triangular Toeplitz matrix then T−1x can be computed in
O(n log22 n) operations using the classical ”divide and conquer” approach.

◻

T−1x = [T0 T1

0 T2
]−1 [x0

x1
] = [T−10 (x0 − T1(T−12 x1))

T−12 x1
]

◻ Since all Ti are Toeplitz we can apply this recursively to compute T−1x.
The number of operations f(⋅) satisfies the recurrence

f(n) ≤ 2f (⌈n
2
⌉) + cn log2 n

for some constant c.

22 / 125

Fast classical polynomial arithmetic

Multiplication
Division
Division
Expansion of products
Evaluation
Lagrange sums
Interpolation

Multiplication

23 / 125

We will restrict ourselves to monomial basis for the nonce.

(∑
i

aix
i)⎛⎝∑j bjx

j⎞⎠ =∑k ckx
k

can be written as ⎡⎢⎢⎢⎢⎢⎢⎢⎣

a0 0 ⋯

a1 a0 ⋱

a2 a1 a0 ⋱

⋮ ⋱ ⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b0
b1
b2
⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c0
c1
c2
⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎦
This yields an O(n log2 n) algorithm.

Division

24 / 125

Given

◻ polynomial c(x) of degree n

◻ polynomial a(x) of degree p

Find

◻ polynomial q(x) of degree n − p

◻ polynomial r(x) of degree p − 1

such that c(x) = a(x)q(x) + r(x). Expanding in the monomial basis:

(p

∑
i=0

anx
n)⎛⎝

n−p

∑
j=0

qjx
j⎞⎠ +

p−1

∑
j=0

rjx
j
=

n

∑
k=0

ckx
k.

Division

25 / 125

In matrix form we have:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 0 ⋯ 0 0 0 ⋯ 0

a1 a0 ⋯ 0 0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

ap−1 ap−2 ⋯ a0 0 0 ⋯ 0

ap ap−1 ⋯ a1 a0 0 ⋯ 0

0 ap ⋯ a2 a1 a0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 ⋯ ap ap−1 ap−2 ⋯ a0
0 0 ⋯ 0 ap ap−1 ⋯ a1
0 0 ⋯ 0 0 ap ⋯ a2
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 ⋯ 0 0 0 ⋯ ap

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q0
q1
⋮

qp−1
qp
qp+1
⋮

qn−p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r0
r1
⋮

rp−1
0

0

⋮

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0
c1
⋮

cp−1
cp
cp+1
⋮

cn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

◻ The qi’s are found in O(n log22 n) operations.
◻ The ri’s are found in O(n log2 n) operations.

Expansion of products

26 / 125

Given complex numbers x0, x1, ⋯, xn−1 define

qr∶s(x) = Πs
i=r(x − xi)

Note that
q0∶n−1 = q0∶(n÷2)q(n÷2+1)∶n−1

◻ Therefore by using this recursively we can compute the coefficients of
q0∶n−1 in O(n log22 n) operations.

◻ Note also that we compute the coefficients of q0∶(n÷2) and q(n÷2+1)∶n−1)
and many more such polynomials along the way. This is exploited in the
next couple of slides.

Evaluation

27 / 125

Re-using xi and qr∶s from previous slide.
Given polynomial p of degree n, find p(xi) for i = 0, . . . , n − 1.
Let

p(x) = q0∶(n÷2)(x)d0(x) + p0(x)
p(x) = q(n÷2+1)∶n−1(x)d1(x) + p1(x)

Then note that

p(xi) = p1(xi), i = 0, . . . , n ÷ 2,

p(xi) = p2(xi), i = (n ÷ 2) + 1, . . . , n − 1,
and the degree of pi is roughly n/2. Therefore by recursively applying this
idea we can finish the evaluation in O(n log32 n) operations.

Lagrange sums

28 / 125

Let xi be as before. Let

qr∶t∶s = (x − xr)⋯(x − xt−1)(x − xt+1)⋯(x − xs)
Let p(x) = ∑i ai q0;i;n−1(x). Note that

q0∶i∶n−1(x) = q0∶i∶(n÷2)(x) q(n÷2+1)∶n−1(x), i = 0, . . . , n ÷ 2,

q0∶i∶n−1(x) = q0∶(n÷2)(x) q(n÷2+1)∶i∶n−1(x), i = (n ÷ 2) + 1, . . . , n − 1.
It follows that we can split p into two Lagrange sums p0 and p1:

p(x) = p0(x) q(n÷2+1)∶n−1(x) + p1(x) q0∶(n÷2)(x)
Using this idea recursively we can compute the coefficients of p in O(n log22 n)
operations.

Interpolation

29 / 125

The famous Lagrange formula

p(x) = n−1

∑
i=0

p(xi)
q0;i;n−1(xi)q0∶i∶n−1(x)

expresses the polynomial p in terms of its values at the points xi.
Note that

q0;i;n−1(xi) = q′0∶n−1(xi).
We can compute the derivative of a polynomial in O(n) operations.
Therefore the coefficients of the Lagrange interpolating formula can be
computed in O(n log32 n) operations.

30 / 125

Displacement structure

Historical context
Toeplitz
Vandermonde
Cauchy and Pick
Displacement operator
Similarity transformations
Recovery
Displacement rank of inverse
Gaussian elimination
Schur algorithm
Toeplitz to Cauchy
Diagonal plus rank one
Inverse
Products

Historical context

31 / 125

◻ Polynomial division can generate large coefficients, so most related
algorithms are impractical (either unstable or memory hogs).

◻ Classical fast and super-fast Toeplitz algorithms are also unstable.
◻ The development of displacement rank by Kailath et. al. [8] finally lead to

developments that helped resolve some of these issues.

Toeplitz

32 / 125

The basic idea is best explained with an example. Let

Z↓ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ⋯ ⋯ 0

1 0 ⋱ ⋮

0 1 ⋱ ⋱ ⋮

⋮ ⋱ ⋱ 0 0

0 ⋯ 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
denote the down shift matrix. Then observe that

⎡⎢⎢⎢⎢⎢⎣
a b c

d a b

e d a

⎤⎥⎥⎥⎥⎥⎦
−Z↓

⎡⎢⎢⎢⎢⎢⎣
a b c

d a b

e d a

⎤⎥⎥⎥⎥⎥⎦
ZT
↓ =

⎡⎢⎢⎢⎢⎢⎣
a b c

d 0 0

e 0 0

⎤⎥⎥⎥⎥⎥⎦
has rank 2.

Vandermonde

33 / 125

Let

V =

⎡⎢⎢⎢⎢⎢⎣
1 x0 x20 ⋯

1 x1 x21 ⋯

⋮ ⋮ ⋮

⎤⎥⎥⎥⎥⎥⎦
, D = diag(x).

Observe that

V −DV ZT
↓ =

⎡⎢⎢⎢⎢⎢⎣
1 0 ⋯

1 0 ⋯

⋮ ⋮

⎤⎥⎥⎥⎥⎥⎦
has rank 1.

Cauchy and Pick

34 / 125

Let

C =

⎡⎢⎢⎢⎢⎢⎣
(x0 − y0)−1 (x0 − y1)−1 ⋯(x1 − y0)−1 (x1 − y1)−1 ⋯

⋮ ⋮

⎤⎥⎥⎥⎥⎥⎦
,

Dx = diag(x), and Dy = diag(y). Observe that

C −D−1x CDy =D
−1
x

⎡⎢⎢⎢⎢⎢⎣
1 1 ⋯

1 1 ⋯

⋮ ⋮

⎤⎥⎥⎥⎥⎥⎦
has rank 1.

Displacement operator

35 / 125

◻ Motivated by the Toeplitz case we call

LA,B(T) = T −ATBT
= PQT

the displacement equation for T , and (P,Q) the generator for T with
P,Q ∈ Rn×r.

◻ The rank r of LA,B(T) is called the displacement rank of T with
respect to LA,B .

If L−1A,B(xyT) can be computed rapidly when x, y ∈ Rn, then we could use(P,Q) as the representation of T and hope to obtain fast algorithms. This
pans out for Gaussian elimination.

Similarity transformations

36 / 125

◻ To invert LA,B we need to make A and B triangular. This can be done
via a similarity transformation
W −1TV −1 − (W −1AW)(W −1TV −1)(V BTV −1) = (W −1P)(QTV −1).

◻ For computational efficiency this requires that the Schur type
decomposition of A and B can be computed rapidly and the
corresponding W and V can be applied rapidly to P and Q respectively.

◻ Note that we do not need to compute W −1TV −1.
◻ From now on we will assume that A and B are already triangular.
◻ Note that this puts a major crimp on the class to which A and B can

originally belong. All our examples so far are fine though.

Recovery

37 / 125

Let

T = [τ tT

s T1
] A = [α 0

b A1
] B = [β 0

h B1
]

P = [pT
P1
] Q = [qT

Q1
]

From the displacement equation we obtain

τ =
pT q

1 − αβ

s = (I − βA1)−1(P1q + τβb)
t = (I − αB1)−1(Q1p + ταh)

To recover T efficiently from (P,Q) we must be able to implement above
formulas in O(n) operations.

Displacement rank of inverse

38 / 125

Claim:
rank(LA,B(T)) = rank(LA,B(T−T)).

Follows from the identities

[T−1 BT

A T
] = [I 0

AT I
] [T−1 BT

0 T −ATBT]
= [I BTT−1

0 I
] [T−1 −BTT−1A 0

A T
]

Natural question is whether we can go quickly from the generators for T to
that of T−1.
Answer: Schur algorithm.

Gaussian elimination (1/3)

39 / 125

One step of (two-sided) block Gaussian elimination on T :

[1 0

−
s
τ

I
] [τ tT

s T1
] [1 −

tT

τ

0 I
] = [τ 0

0 T1 −
stT

τ

] = [τ 0

0 S
]

Let

W = [1 0
s
τ

I
] V = [1 tT

τ

0 I
]

Then we can find W −1AW and V −TBV T :

[1 0

−
s
τ

I
] [α 0

b A1
] [1 0

s
τ

I
] = [α 0

b + (A1 − αI) sτ A1
]

[1 0

−
t
τ

I
] [β 0

h B1
] [1 0

t
τ

I
] = [β 0

h + (B1 − βI) tτ B1
]

Gaussian elimination (2/3)

40 / 125

Let

b1 = b + (A1 − αI) s
τ

h1 = h + (B1 − βI) t
τ

then (W −1AW)(W −1TV −1)(V BTV −1) can be computed as:

[α 0

b1 A1
] [τ 0

0 S
] [β hT1

0 BT
1

] = [ατβ ατhT1
b1τβ A1SB

T
1 + b1τh

T
1

]
W −1P :

[1 0

−
s
τ

I
] [pT

P1
] = [pT

P1 −
spT

τ

]
V −TQ:

[1 0

−
t
τ

I
] [qT

Q1
] = [qT

Q1 −
tqT

τ

]

Gaussian elimination (3/3)

41 / 125

Claim:
rank(LA1,B1

(S)) = rank(LA,B(T)).
Displacement equation for Schur complement S

S −A1SB
T
1 = P2Q

T
2 + b1τh

T
1

= P2 (I + qpT

ταβ
)QT

2

using the recovery formulas for the transformed equation for T . If αβ = 0 it is
easy to show that rank(P2Q

T
2) < r.

Schur algorithm (1/2)

42 / 125

◻ The recursive application of this idea to S is called the Schur algorithm
(originally discovered in complex analysis).

◻ Requires that A and B are special lower triangular.

– Ax can be computed in O(n) operations.
– (I − βA)−1x can be computed in O(n) operations

◻ The recovery formula computes the first row and column of T (and S) in
O(n) operations. This is enough to compute the LU factorization
recursively.

◻ Hence the LU factorization of T can be computed in O(n2) operations
(versus the slow O(n3) operations).

Schur algorithm (2/2)

43 / 125

The Schur algorithm is in general unstable.

◻ If A and B are diagonal then we can incorporate pivoting and obtain a
fast O(n2) algorithm that is very stable [6].

◻ The general Schur algorithm can also be stabilized to some extent [3].
◻ If A and B are not diagonalizable carefully chosen low-rank perturbations

can be used to fix the problem.
◻ The Schur algorithm produces unstructured L and U factors.

Toeplitz to Cauchy

44 / 125

Let:

Zφ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ⋯ ⋯ 0 φ

1 0 ⋮ 0

0 1 ⋱ ⋮ ⋮

⋮ ⋱ ⋱ 0 0

0 ⋯ 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Note: Eigendecomposition of Zφ is a diagonal scaling of Z↺’s decomposition.

◻ rank(LZφ,Zφ
(T)) is at most three if T is Toeplitz.

◻ Therefore a fast trigonometric transform will convert a Toeplitz matrix to
a generalized Cauchy matrix.

Diagonal plus rank one

45 / 125

◻ If LA,B is non-invertible (standard Cauchy matrix), we can fix it by
considering LA+xyT ,B for suitable x, y ∈ Rn.

◻ If A is diagonal we can choose the eigenvector matrix of A + xxT to be a
Cauchy matrix with orthogonal columns and this can be computed in
O(n2) operations plus the cost of finding n roots of a secular equation
[Gu & Eisenstat].

Inverse (1/2)

46 / 125

We can use the Schur algorithm to find the generators of the inverse. Note
that T−1 is a Schur complement of

[T −I

I 0
]

and the rank of

[T −I

I 0
] − [A 0

0 BT †] [T −I

I 0
] [BT 0

0 A†]
is at most

rank(LA,B(T)) + rank(I −AA†) + rank(I −BB†)

Inverse (2/2)

47 / 125

◻ By running the Schur algorithm half-way through, the generators for the
inverse can be computed in O(n2) operations

◻ Applied to a Toeplitz matrix this yields the Gohberg–Semencul formula for
the inverse of Toeplitz matrices.

Products

48 / 125

Claim: Rank of
LA1,B2

(T1T2)
is at most

rank(LA1,B1
(T1)) + rank(LA2,B2

(T2)) + rank(I −BT
1 A2)

Proof is an easy calculation.

◻ The generators for T1T2 can be computed in O(n2) operations.
◻ Product of two Toeplitz-like matrices is Toeplitz-like with larger

displacement rank.
◻ Product of two Cauchy-like matrices is Cauchy-like under some

circumstances.

Questions

49 / 125

◻ Given a family of matrices T , what is the optimal choice of the family(A,B)?
◻ If A and B are lower triangular Toeplitz matrices we have a fast Schur

algorithm. What family of matrices does this correspond to?
◻ Is there a generic technique to compute Tx quickly?!
◻ Is there a generic technique to handle structured matrices of the form

T1 ⊗ T2 + T3 ⊗ T4?

50 / 125

Low rank structure

Simple rank structures
Sparse matrices
Sparsification

Simple rank structures

51 / 125

The Schur algorithm exploits low-rank structure in an oblique manner. Many
modern algorithms are built on a few trivial observations:

◻ If A = PQT with P,Q ∈ Rn×r, then Ax = P (QTx) can be computed in
O(nr) operations.

◻ Furthermore P and Q can be computed in O(n2r) operations via
Gaussian elimination.

◻ (I + PQT)−1x = (I − P (I +QTP)−1QT)x which can be computed in
O(nr2) operations.

◻ A nice coherent presentation is possible via sparse matrices.

Sparse matrices

52 / 125

◻ What is surprising is that these algorithms are closely tied to sparse
Gaussian elimination.

◻ For example Gaussian elimination on a matrix of bandwidth k costs only
O(nk2) operations.

◻ Ordering is critical for fast sparse Gaussian elimination. For the arrowhead
matrix ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

♣ 0 ⋯ 0 ♣

0 ♣ ⋱ ⋮ ⋮

⋮ ⋱ ⋱ 0 ♣

0 ⋯ 0 ♣ ♣

♣ ⋯ ♣ ♣ ♣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
sparse Gaussian elimination takes linear time. However, if we reverse the
ordering of both rows and columns, sparse Gaussian elimination take cubic
time!

Sparsification (1/2)

53 / 125

Let’s discover the formula for (D + PQT)−1, with P,Q ∈ Rn×r. First we see
how to quickly multiply b = (D + PQT)x

y = QTx b =Dx + Py

Our goal is to find x given b. Note that the above formulas are linear and can
be expressed in matrix form

[D P

−QT I
] [x

y
] = [b

0
]

where all unknown quantities are on the left. If we eliminate y first we see
that D +PQT is the dense Schur complement of a sparse (identity sub-block)
matrix. However, we can eliminate in the opposite order instead.

Sparsification (2/2)

54 / 125

[D P

0 I +QTD−1P
] [x

y
] = [b

QTD−1b
]

Now fast back-substituion yields

y = (I +QTD−1P)−1QTD−1b x =D−1(b − Py)
which is very efficient if D is a structured matrix.
Plugging y back in we discover the well-known formula

x = (D−1 −D−1P (I +QTD−1P)−1QTD−1)b
This is the core of the strategy we will follow.

55 / 125

Sequentially Semi-Separable Representations

Hankel blocks
Representation
Controllability & Observability
Banded matrices
Matrix–vector multiply
Diagonal representation
Inversion
±

Multiplication
Lower times lower
Lower times upper
Inverse of lower
LU factorization
Inverse

Hankel blocks (1/2)

56 / 125

For a square matrix A consider the block partition

A = (
m n −m

m ♣ A01

n −m A10 ♣
)

◻ We will refer to the off-diagonal blocks, A01 = Hm and A10 = Gm, as
Hankel blocks.

◻ Hankel blocks never include entries on the principal diagonal.
◻ Now suppose that we have a family of matrices A for which every Hankel

block has rank at most r independent of the size n. Can we do matrix
arithmetic quickly with this family?

◻ Answer: Yes, via SSS representations [1, 5].
◻ Call r the SSS-rank of A.

Hankel blocks (2/2)

57 / 125

D0

D1

D2

D3

D4

D5

D6

D7

H1

H5

Representation

58 / 125

If A has SSS-rank at most r then there exists sequences of matrices Di, Pi,
Qi, Ri, Ui, Vi and Wi, such that each is of size no more than r, and

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D0 U0V
T
1 U0W1V

T
2 U0W1W2V

T
3 ⋯

P1Q
T
0 D1 U1V

T
2 U1W2V

T
3 ⋯

P2R1Q
T
0 P2Q

T
1 D2 U2V

T
3 ⋯

P3R2R1Q
T
0 P3R2Q

T
1 P3Q

T
2 D3 ⋯

⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The converse is also true.

Controllability & Observability

59 / 125

◻ For the converse direction note that

Hj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U0W1W2⋯Wj−1

U1W2⋯Wj−1

⋮

Uj−2Wj−1

Uj−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[V T

j WjV
T
j+1 WjWj+1V

T
j+2 ⋯]

◻ For the forward direction note that compatible low-rank factorizations of
Hj defines Uj−1, Wj−1 and Vj recursively in terms of those from Hj−1.

◻ This yields an O(n2r) algorithm for constructing the SSS representation
of a general dense matrix.

◻ Faster algorithms are available in special cases.

Banded matrices

60 / 125

A tri-diagonal matrix T , has SSS-rank at most 1. An SSS representation can
be written down explicitly.

Di = Ti,i

Ui = Ti,i+1

Wi = 0

Vi = 1

Pi = Ti,i−1

Ri = 0

Qi = 1

The inverse of a tri-diagonal matrix is not tri-diagonal but it has SSS-rank at
most 1 too as we will see later.

Matrix–vector multiply

61 / 125

To compute

⎡⎢⎢⎢⎢⎢⎢⎢⎣

D0 U0V
T
1 U0W1V

T
2 ⋯

P1Q
T
0 D1 U1V

T
2 ⋯

P2R1Q
T
0 P2Q

T
1 D2 ⋯

⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x0
x1
x2
⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b0
b1
b2
⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎦
we can proceed as follows:

gn = V T
n xn

gj = V T
j xj +Wjgj+1, j < n,

h0 = QT
0 x0

hj = Rjhj−1 +Q
T
j xj , 0 < j,

bi = Pihi−1 +Dixi +Uigi+1.

Diagonal representation (1/3)

62 / 125

Let

W =

⎡⎢⎢⎢⎢⎢⎣
W0

W1

⋱

⎤⎥⎥⎥⎥⎥⎦
= diag{Wi} g =

⎡⎢⎢⎢⎢⎢⎣
g0
g1
⋮

⎤⎥⎥⎥⎥⎥⎦
and V = diag{Vi}. Then the recursions for g can be written as

(I −WZT
↓)g = V Tx

Similarly the recursions for h can be written as

(I −RZ↓)h = QTx

and those for b as
b = UZT

↓ g +Dx + PZ↓h

Diagonal representation (2/3)

63 / 125

We can assemble all the recursions into a single matrix equation:

⎡⎢⎢⎢⎢⎢⎣
D UZT

↓ PZ↓
−V T I −WZT

↓ 0

−QT 0 I −RZ↓

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
x

g

h

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
b

0

0

⎤⎥⎥⎥⎥⎥⎦
Eliminating g and h we get the diagonal representation of A as a Schur
complement of the above sparse matrix

A =D +UZT
↓ (I −WZT

↓)−1V T
+ PZ↓(I −RZ↓)−1QT

◻ Since WZT
↓ and RZ↓ are bi-diagonal matrices this also makes obvious the

fast matrix–vector multiplication algorithm.
◻ Also note that the formula splits into strictly lower-triangular, diagonal

and strictly upper-triangular terms.

Diagonal representation (3/3)

64 / 125

We see the key algebraic identity is the formula

⎡⎢⎢⎢⎢⎢⎣
I −W0 0 ⋯

0 I −W1 ⋱

⋮ ⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎦

−1

=

⎡⎢⎢⎢⎢⎢⎣
I W0 W0W1 W0W1W2 ⋯

0 I W1 W1W2 ⋯

⋮ ⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎦
which is also another way to express the fast multiplication.

Inversion (1/2)

65 / 125

The equations ⎡⎢⎢⎢⎢⎢⎣
D UZT

↓ PZ↓
−V T I −WZT

↓ 0

−QT 0 I −RZ↓

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
x

g

h

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
b

0

0

⎤⎥⎥⎥⎥⎥⎦
can be re-ordered to yield almost no fill-in during sparse Gaussian elimination.
First re-order the unknowns

yi =

⎡⎢⎢⎢⎢⎢⎣
xi
gi
hi

⎤⎥⎥⎥⎥⎥⎦
Then observe that the equations can be re-ordered as

⎡⎢⎢⎢⎢⎢⎣
0 0 Pi

0 0 0

0 0 −Ri

⎤⎥⎥⎥⎥⎥⎦
yi−1 +

⎡⎢⎢⎢⎢⎢⎣
Di 0 0

−V T
i I 0

−QT
i 0 I

⎤⎥⎥⎥⎥⎥⎦
yi +

⎡⎢⎢⎢⎢⎢⎣
0 Ui 0

0 −Wi 0

0 0 0

⎤⎥⎥⎥⎥⎥⎦
yi+1 =

⎡⎢⎢⎢⎢⎢⎣
bi
0

0

⎤⎥⎥⎥⎥⎥⎦

Inversion (2/2)

66 / 125

◻ This is a block tri-diagonal matrix.
◻ So there exists a numerically stable O(nr2) algorithm to compute x from

b.
◻ The whole affair is more transparent by looking at the associated

data-flow graph:

g2 g3 g4 g5

x1 b1 x2 b2 x3 b3 x4 b4 x5 b5

h1 h2 h3 h4

V T
2 V T

3 V T
4 V T

5

W2 W3 W4

R2 R3 R4

QT
1 QT

2 QT
3 QT

4

U1

D1

U2

D2

P2

U3

D3

P3

U4

D4

P4

D5

P5

± (1/3)

67 / 125

◻ From

[♣ A01

♣ ♣
] ± [♣ B01

♣ ♣
] = [♣ A01 ±B01

♣ ♣
]

we see that the SSS-rank of A ±B is at most the sum of the SSS-ranks of
A and B.

◻ The SSS representation of A ±B can be computed in linear time from
that of A and B.

◻ The algorithm is easily worked out by brute force, but we introduce an
algebraic technique [Dewilde & van der Veen].

◻ It is enough to consider the problem for two strictly lower triangular
matrices in diagonal form:

P1Z↓(I −R1Z↓)−1QT
1 ± P2Z↓(I −R2Z↓)−1QT

2

± (2/3)

68 / 125

◻ Note that the previous equation can be re-written as:

[P1Z↓ P2Z↓]STS [I −R1Z↓ 0

0 I −R2Z↓
]−1 STS [Q1 ±Q2]T

where S is the perfect shuffle permutation matrix (STS = I).
◻ With some abuse of notation we will continue to use Z↓ to denote a

“block” down-shift matrix where the inner partitions will be chosen by the
context!

S [Z↓ 0

0 Z↓
]ST = Z↓

◻ Let

[P1 P2]ST = P3 S [Q1 ±Q2]T = QT
3 S

T [R1 0

0 R2
]S = R3

± (3/3)

69 / 125

Now the representation of AB simplifies to

AB = P3Z↓(I −R3Z↓)−1QT
3

and observe that everything is still diagonal which yields the fast algorithm

P3;i = [P1;i P2;i]
Q3;i = [Q1;i Q2;i]
R3;i = [R1;i 0

0 R2;i
]

This trivial algorithm could have also been obtained by a “state-space”
argument using the data-flow graph.

Multiplication

70 / 125

Note that

[♣ A01

♣ ♣
] [♣ B01

♣ ♣
] = [♣ A01♣ + ♣B01

♣ ♣
]

◻ The SSS-rank of AB is at most the sum of the SSS-ranks of A and B.
◻ There exists an O(n) operations recursion to compute the SSS

representation of AB from that of A and B.
◻ We use the algebraic approach and split the problem into four pieces of

which only two will be covered in these slides.

– Strictly lower triangular times strictly lower triangular
– Strictly lower triangular times strictly upper triangular

Lower times lower

71 / 125

We multiply out the diagonal representation for strictly lower:

P1Z↓(I −R1Z↓)−1QT
1 P2Z↓(I −R2Z↓)−1QT

2 =

[0 P1Z↓] [I −R2Z↓ 0

−QT
1 P2Z↓ I −R1Z↓

]−1 [QT
2

0
] =

[0 P1Z↓]STS (I − [R2 0

QT
1 P2 R1

] [Z↓ 0

0 Z↓
])−1 STS [QT

2

0
] =

P3Z↓(I −R3Z↓)−1QT
3

where

P3;i = [0 P1;i] Q3;i = [Q2;i 0] R3;i = [R2;i 0

Q1;iP2;i R1;i
]

This fast algorithm is harder to infer by other means.

Lower times upper (1/4)

72 / 125

Mutiplying out the diagonal representation:

PZ↓(I −RZ↓)−1QTUZT
↓ (I −WZT

↓)−1V T

The previous technique does not work now, so we look for a PFE similar to:

z−1

(1 − αz)(1 − βz−1) =
α(1 − αβ)−1

1 − αz
+
(1 − αβ)−1z−1

1 − βz−1

We try

(I −RZ↓)−1QTUZT
↓ (I −WZT

↓)−1 =

(I −RZ↓)−1A +BZT
↓ (I −WZT

↓)−1
with A and B as block diagonal matrices.

Lower times upper (2/4)

73 / 125

Some algebra reveals that

A = RZ↓BZT
↓ QTU = RZ↓BZT

↓ W −B

Exploiting the diagonal nature we obtain B via the recursion:

B1 = Q
T
1 U1 Bi = Q

T
i Ui +Ri−1Bi−1Wi

From this we can recover A and hence:

PZ↓(I −RZ↓)−1QTUZT
↓ (I −WZT

↓)−1V T
=

PZ↓(I −RZ↓)−1AV T
+ PZ↓BZT

↓ (I −WZT
↓)−1V T

The second term is not in the desired form.

Lower times upper (3/4)

74 / 125

Using the trivial identity

(I −WZT
↓)−1 = I +WZT

↓ (I −WZT
↓)−1

we have

PZ↓BZT
↓ (I −WZT

↓)−1V T
=

PZ↓BZT
↓ V

T
+ (PZ↓BZT

↓ W)ZT
↓ (I −WZT

↓)−1V T

◻ Observe that Z↓BZT
↓ is a block diagonal matrix.

◻ So we are in the desired diagonal form now and we can read off the
algorithm for lower times upper.

Lower times upper (4/4)

75 / 125

We use a suffix 3 to denote the SSS representation of the product of a lower
and upper SSS matrix.

D3 = PZ↓BZT
↓ V

T

P3 = P

Q3 = Q

R3 = R

U3 = PZ↓BZT
↓ W

V3 = V

W3 = W

◻ This requires O(n) operations.
◻ The SSS-rank does not increase.

Inverse of lower (1/2)

76 / 125

Claim: The SSS-rank of a lower triangular matrix is at most that of the
original matrix.
Follows from:

[♣ 0

A10 ♣
]−1 = [♣ 0

♣A10♣ ♣
]

To find the representation quickly consider the diagonal form:

(D + PZ↓(I −RZ↓)−1QT)−1 =

D−1 −D−1PZ↓(I − (R −QTD−1P)Z↓)−1QTD−1

Inverse of lower (2/2)

77 / 125

We can now read off the algorithm, using subscript 2 to denote quantities
belonging to the inverse.

D2 = D−1

P2 = −D−1P

Q2 = D−TQ

R2 = R −QTD−1P

This requires O(n) operations.

LU factorization (1/4)

78 / 125

Claim: The SSS-ranks of the LU factors are at most that of the original
matrix.
Follows from:

[♣ A01

A10 ♣
] = [♣ 0

A10♣ ♣
] [♣ ♣A01

0 ♣
]

◻ To find the algorithm we can try to solve the recursions for the fast
multiplication of lower times upper triangular matrices in SSS form.

◻ An alternative is a nice approach proposed by Ming Gu (UCB)

LU factorization (2/4)

79 / 125

First we generalize the representation a little bit by including an extra term:

B = A +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

P0

P1R0

P2R1R0

⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎦
C0

⎡⎢⎢⎢⎢⎢⎢⎢⎣

V0

V1W
T
0

V2W
T
1 W T

0

⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

with C0 = 0 (but pretend it is not). Note that we can recover the first row
and column of B:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

D0 + P0C0V
T
0 (U0 + P0C0W0)V T

1 (U0 + P0C0W0)W1V
T
2 ⋯

P1(QT
0 +R0C0V

T
0) ⋅ ⋅

P2R1(QT
0 +R0C0V

T
0) ⋅ ⋅

⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎦
This gives the first column of L and the first row of U .

LU factorization (3/4)

80 / 125

Next the Schur complement.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

D1 U1V
T
2 U1W2V

T
3 ⋯

P2Q
T
1 D2 U2V

T
3 ⋯

P3R2Q
T
1 P3Q

T
2 D3 ⋯

⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

P1

P2R1

P3R2R1

⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎦
R0C0W0 [V T

1 W1V
T
2 W1W2V

T
3 ⋯]

−

⎡⎢⎢⎢⎢⎢⎢⎢⎣

P1

P2R1

P3R2R1

⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(QT

0 +R0C0V
T
0)(D0 + P0C0V

T
0)−1(U0 + P0C0W0)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

V1

V2W
T
1

V3W
T
2 W T

1

⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

LU factorization (4/4)

81 / 125

Clearly the only thing we need to do is

C1 = R0C0W0 − (QT
0 +R0C0V

T
0)(D0 + P0C0V

T
0)−1(U0 + P0C0W0)

Doing this recursively we can compute the LU factorization in O(n)
operations.
The SSS structure of L and U can be inferred from the above formulas.

Inverse

82 / 125

◻ From

[♣ A01

A10 ♣
]−1 = [♣ ♣A01♣

♣A10♣ ♣
]

we see that the SSS rank of A−1 is at most the SSS rank of A.
◻ Using our previous formulas the SSS representation of A−1 can be

computed in linear time from the SSS representation of the LU factors of
A.

83 / 125

Hierarchically semi-separable representations

Fast multi-pole method
Row and column Hankel blocks
Binary partition tree
Row and column bases
Expansion coefficients
Representation
Construction
Matrix–vector multiply
Multiply signal flow graph
Solver
Multiplication
LU factorization
Lower inverse
Inverse

Fast multi-pole method

84 / 125

◻ The FMM [7] can evaluate sums of the following form

pi =
n−1

∑
j=0

qj

1 + (xi − yj)2
in O(n log2 n) operations when xi, yi ∈ R.

◻ In matrix terms this is an algorithm for the fast matrix–vector
multiplication of the matrix Aij = (1 + (xi − yj)2)−1.

◻ The FMM can also be viewed as a matrix representation that captures
certain low-rank structures in A.

◻ The main question is how to apply A−1 quickly?
◻ The answer is the HSS representation [2].

Row and column Hankel blocks (1/6)

85 / 125

The HSS representation is closely related to the SSS representation but uses
slightly different Hankel blocks.

A =
⎛⎜⎝

l m n − l −m

l ♣ A01 ♣

m A10 ♣ A12

n − l −m ♣ A21 ♣

⎞⎟⎠
◻ We call

Rl = [A10 A12]
as a row Hankel block.

◻ We call

Cl = [A01

A21
]

as a column Hankel block.

Row and column Hankel blocks (2/6)

86 / 125

◻ The HSS representation captures the low ranks of both row and column
Hankel blocks but not all of them. It only uses a pre-specified set of
hierarchical partitions.

◻ Let n0;0 = n. We assume that there are non-negative integers nk;i

specified such that

nk;i = nk+1;2i + nk+1;2i+1, 0 ≤ k <K, 0 ≤ i < 2k

Usually these numbers are visualized on a binary tree with K levels that is
called the partition tree.

◻ Using the non-negative integers nk;i on a single level k we can partition
the matrix

A = Ak =
⎛⎜⎝

nk;0 nk;1 ⋯

nk;0 Ak;0,0 Ak;0,1 ⋯

nk;1 Ak;1,0 Ak;1,1 ⋯

⋮ ⋮ ⋮

⎞⎟⎠

Binary partition tree

87 / 125

Row and column Hankel blocks (3/6)

88 / 125

The corresponding row Hankel block

Rk;i = [Ak;i,0 ⋯ Ak;i,i−1 Ak;i,i+1 ⋯Ak;i,2k−1]
and column Hankel block

Ck;i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ak;0,i

⋮

Ak;i−1,i

Ak;i+1,i

⋮

Ak;2k−1,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Row and column bases (4/6)

89 / 125

Row and column Hankel blocks (5/6)

90 / 125

◻ Row Hankel blocks overlaps those of children node:

Rk+1;i = [Ak;2i,0 ⋯ Ak;2i,2(i−1) Ak;2i,2(i+1) ⋯ Ak;2i,2k−1

Ak;2i+1,0 ⋯ Ak;2i+1,2(i−1) Ak;2i+1,2(i+1) ⋯ Ak;2i+1,2k−1
]

◻ Similarly for column Hankel blocks.
◻ The HSS (FMM) representation exploits the low rank structure of

individual row and column Hankel blocks and the overlap.
◻ We will call the maximum of the ranks of the row and column Hankel

blocks as the HSS-rank of the matrix.
◻ This is similar to SSS but a bit simpler.

Row and column bases (6/6)

91 / 125

Row and column bases (1/3)

92 / 125

◻ Let Uk;i be a full column rank matrix such that its range space is identical
to that of Rk;i.

◻ Let Vk;i be a full column rank matrix such that its range space is identical
to that of CTk;i.

◻ Then there exists matrices Bk;i,j such that

Ak;i,j = Uk;iBk;i,jV
T
k;i,j , i ≠ j

◻ This is a highly redundant representation and we can throw many of these
matrices out.

Row and column bases (2/3)

93 / 125

Row and column bases (3/3)

94 / 125

◻ Due to the overlap of Rk;i with Rk+1;2i and Rk+1;2i+1 it follows that there
exists translation matrices Rk+1;2i and Rk+1;2i+1 such that

Uk;i = [Uk+1;2iRk+1;2i

Uk+1;2i+1Rk+1;2i+1
]

◻ Similarly for Ck;i we can define translation matrices Wk;i such that

Vk;i = [Vk+1;2iWk+1;2i

Vk+1;2i+1Wk+1;2i+1
]

Expansion coefficients (1/2)

95 / 125

◻ In the FMM representation one has to choose in addition which
off-diagonal submatrices are represened explicitly in terms of Bk;i,j .

◻ For the HSS case a very simplistic choice is made. We only store Bk;2i,2i+1

and Bk;2i+1,2i.
◻ For example, note that A1;0,1 covers all sub-matrices of the A2;i,j for

i = 0, 1 and j = 2, 3. Therefore B1;0,1 already covers those other blocks
and their expansion coefficients are not needed.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[A2;0,0 U2;0B2;0,1V
T
2;1

U2;1B2;1,0V
T
2;0 A2;1,1

]
⎡⎢⎢⎢⎢⎢⎣

U1;0B1;0,1V
T
1;1

⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣
U1;1B1;1,0V

T
1;0

⎤⎥⎥⎥⎥⎥⎦
[A2;2,2 U2;2B2;2,3V

T
2;3

U2;3B2;3,2V
T
2;2 A2;3,3

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Expansion coefficients (2/2)

96 / 125

Representation (1/2)

97 / 125

We can now state the final HSS representation using the binary partition tree.

◻ On leaf nodes we store Ak;i,i, Uk;i, Vk;i.
◻ On the edge from parent (k, i) to child (k + 1, 2i), we store the translation

operators Rk+1;2i, Wk+1;2i+1. Similarly for child (k + 1, 2i + 1).
◻ On the edge from sibling (k, 2i) to sibling (k, 2i + 1) we store Bk;2i,2i+1.

Similarly for the opposite edge.

Representation (2/2)

98 / 125

Construction

99 / 125

◻ There is a generic construction algorithm, very similar to the SSS case,
that takes O(n2) operations. It is best to do this algorithm over several
sweeps.

◻ For special cases the representation can be computed much faster.
◻ For sparse matrices the HSS representation can be computed in linear

time.
◻ If Ai,j = f(xi − yj) then FMM techniques can be used to compute the

representation in almost linear time.

Matrix–vector multiply (1/4)

100 / 125

Consider Ax = b. We partition x and b according to the HSS partition tree:

x0;0 = x, xk;i = (nk+1;2i xk+1;2i
nk+1;2i+1 xk+1;2i+1

)
Note that we have to compute V T

k;ixk;i = gk;i. Clearly this is doable at leaf
nodes. At non-leaf nodes we use the corresponding translation operators

gk;i = V T
k;ixk;i

= [W T
k+1;2iV

T
k+1;2i W T

k+1;2i+1V
T
k+1;2i+1] [xk+1;2i

xk+1;2i+1
]

= W T
k+1;2igk+1;2i +W

T
k+1;2i+1gk+1;2i+1

Matrix–vector multiply (2/4)

101 / 125

Next we need to compute terms of the form Uk;2iBk;2i,2i+1gk;2i+1. The main
idea is to delay these multiplications to save operations. To that end we
define fk;i via

bk;i = Ak;i,i xk;i +Uk;ifk;i

At leaf nodes we have access to Uk;i. At non-leaf nodes we use the
corresponding translation operators instead. It is easier to develop the
recursions by starting at the root level

b0;0 = A0;0,0x0;0 +U0;0f0;0 = Ax

which forces f0;0 = [].

Matrix–vector multiply (3/4)

102 / 125

At level 1:

b1;0 = A1;0,0x1;0 +U1;0B1;0,1g1;1 +U1;0R1;0f0;0

= A1;0,0x1;0 +U1;0(B1;0,1g1;1 +R1;0f0;0)
which suggests that

f1;0 = B1;0,1g1;1 +R1;0f0;0

The right recursions are

fk+1;2i = Bk;2i,2i+1 gk;2i+1 +Rk;2ifk;i

fk+1;2i+1 = Bk;2i+1,2i gk;2i +Rk;2i+1fk;i

Matrix–vector multiply (4/4)

103 / 125

We can now assemble the entire FMM method for the HSS case. For the sake
of simplicity we will assume that all leaf nodes are at level K.

gK;i = V T
K;i xK;i

gk;i = W T
k+1;2i gk+1;2i +W

T
k+1;2i+1 gk+1;2i+1

f0;0 = []
fk+1;2i = Bk;2i,2i+1 gk;2i+1 +Rk;2ifk;i

fk+1;2i+1 = Bk;2i+1,2i gk;2i +Rk;2i+1fk;i

bK;i = AK;i,i xK;i +UK;ifk;i

This algorithm costs O(n) operations.

Multiply signal flow graph

104 / 125

Solver (1/5)

105 / 125

◻ We observe that the FMM recursions are linear. So we can encode them
in a sparse matrix.

◻ Fix an ordering of the nodes, (k; i), of the binary partition tree and let g
denote the corresponding vector of the gk;i’s. Similarly for f .

◻ Let Z∨ denote the down-shift matrix on the binary partition tree:

(Z∨f)k;i = fk−1;⌊ i
2
⌋

Note that (Z∨f)0;0 = 0 and the values on the leaf, fK;i, are lost after this
operation.

◻ ZT
∨ denotes the up-shift and add operation on the binary partition tree:

(ZT
∨ g)k;i = gk+1;2i + gk+1;2i+1

ZT
∨ introduces zeros into the leaves and looses the value at the root.

Solver (2/5)

106 / 125

◻ Let Z↔ denote the exchange-siblings operator on the binary tree:

(Z↔g)k;2i = gk;2i+1 (Z↔g)k;2i+1 = gk;2i

◻ Let Pleaf denote the linear operator that projects onto the leaves of the
binary partition tree:

(Pleaf x)K;i = xK;i otherwise (Pleaf x)k;i = 0
Note that (PT

leaf f)K;i = fK;i

◻ Note that Z∨Pleaf = 0.

Solver (3/5)

107 / 125

In the chosen order of the nodes of the binary partition tree define the
following:

◻ W : block diagonal matrix of the Wk;i’s. Similarly for R.
◻ U : block diagonal matrix of the UK;i’s. Similarly for V .
◻ B: block tri-diagonal matrix of the Bk;i,j ’s.
◻ D: block diagonal matrix of the AK;i,i’s.
◻ Now we can write the matrix–vector multiplication recursions as:

g = ZT
∨W

T g +PleafV
Tx

f = RZ∨f +BZ↔g

b = Dx +UP
T
leaff

Solver (4/5)

108 / 125

We can merge all these equations into a single sparse matrix:

⎡⎢⎢⎢⎢⎢⎣
I −ZT

∨W
T 0 −Pleaf V

T

−BZ↔ I −RZ∨ 0

0 UP
T
leaf D

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
g

f

x

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
0

0

b

⎤⎥⎥⎥⎥⎥⎦
Eliminating g and f we obtain the diagonal form of the HSS representation

A =D +UP
T
leaf(I −RZ∨)−1BZ↔(I −ZT

∨W
T)−1PleafV

T

Solver (5/5)

109 / 125

◻ However there is another elimination order that has essentially no fill-in.
◻ Observe that the graph correspondig to the above sparse matrix is the

same as the signal flow graph for multiplication.
◻ The depth-first ordering of this graph is easily seen to be free of fill-in

for both LU factorization and QR factorization.
◻ Therefore there is a numerically stable solver for HSS matrices that

requires only O(n) operations.
◻ One can also obtain explicit factorizations of HSS matrices where the

factors are also in HSS form in O(n) operations.

Multiplication (1/3)

110 / 125

Since

⎡⎢⎢⎢⎢⎢⎣
♣ A01 ♣

A10 ♣ A12

♣ A21 ♣

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
♣ B01 ♣

B10 ♣ B12

♣ B21 ♣

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
♣ ♣B01 +A01♣ + ♣B21 ♣

A10♣ + ♣B10 +A12♣ ♣ A10♣ + ♣B12 +A12♣

♣ ♣B01 +A21♣ + ♣B21 ♣

⎤⎥⎥⎥⎥⎥⎦
◻ Therefore the HSS-rank of AB is at most the sum of the HSS-ranks of A

and B.
◻ The corresponding fast algorithm can be derived algebraically from the

diagonal representation (unpublished).

Multiplication (2/3)

111 / 125

The recursions for AB = C:

GK;i = V T
K;i(A)UK;i(B)

Gk;i = W T
k+1;2i(A)Gk+1;2iRk+1;2i(B) +

W T
k+1;2i+1(A)Gk+1;2i+1Rk+1;2i+1(B)

F0;0 = []
Fk+1;2i = Bk+1;2i,2i+1(A)Gk+1;2i+1Bk+1;2i+1,2i(B)

+Rk+1;2i(A)Fk;iW
T
k+1;2i(B)

DK;i = DK;i(A)DK;i(B) +UK;i(A)Fk;iV
T
K;i(B)

UK;i = [DK;i(A)UK;i(B) UK;i(A)]
VK;i = [VK;i(B) DT

K;i(B)VK;i(A)]

Multiplication (3/3)

112 / 125

The rest of the recursions for AB = C:

Bk;2i,2i+1 = [Bk;2i,2i+1(B) 0

Rk;2i(A)Fk−1;iW
T
k;2i+1(B) Bk;2i,2i+1(A)]

Bk;2i+1,2i = [Bk;2i+1,2i(B) 0

Rk;2i+1(A)Fk−1;iW
T
k;2i(B) Bk;2i+1,2i(A)]

Rk;2i = [Rk;2i(B) 0

Bk;2i,2i+1(A)Gk;2i+1Rk;2i+1(B) Rk;2i(A)]
Rk;2i+1 = [Rk;2i+1(B) 0

Bk;2i+1,2i(A)Gk;2iRk;2i(B) Rk;2i+1(A)]
Wk;2i = [Wk;2i(B) BT

k;2i+1,2i(B)GT
k;2i+1Wk;2i+1(B)

0 Wk;2i(A)]
Wk;2i+1 = [Wk;2i+1(B) BT

k;2i,2i+1(B)GT
k;2iWk;2i(B)

0 Wk;2i+1(A)]

LU factorization (1/6)

113 / 125

From

⎡⎢⎢⎢⎢⎢⎣
♣ A01 ♣

A10 ♣ A12

♣ A21 ♣

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
I 0 0

A10♣ I 0

♣ (A21 + ♣A01)♣ I

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
♣ A01 ♣

0 ♣ A12 +A10♣

0 0 ♣

⎤⎥⎥⎥⎥⎥⎦
◻ Therefore the LU factors has the same HSS-rank as A.
◻ There is a fast algorithm to find the HSS representation of the LU factors

from that of A.
◻ We use Gu’s approach and factor

LU = A0;0,0 +U0;0F0;0V
T
0;0

◻ The derivation is a bit tricky so we just present the final recursions.

LU factorization (2/3)

114 / 125

F0;0 = []
Fk;2i = Rk;2iFk−1;iW

T
k;2i

Bk;2i+1,2i(L) = Bk;2i+1,2i +Rk;2i+1Fk−1;iW
T
k;2i

Bl;2i,2i+1(U) = Bk;2i+1,2i +Rk;2iFk−1;iW
T
k;2i+1

DK;i(L)DK;i(U) = DK;i +UK∶iFK;iV
T
K;i

UK;i(U) = D−1K;i(L)UK;i

VK;i(U) = VK;i

UK;i(L) = UK;i

VK;i(L) = D−TK;i(U)VK;i

LU factorization (3/3)

115 / 125

GK;i = V T
K;i(L)UK;i(U)

Gk−1;i = W T
k;2i(L)Gk;2iRk;2i(U) +W T

k;2i+1(L)Gk;2i+1Rk;2i+1(U)
Rk;2i(U) = Rk;2i

Rk;2i+1(U) = Rk;2i+1 −Bk;2i+1,2i(L)Gk;2iRk;2i

Wk;i(U) = Wk;i

Rk;i(L) = Rk;i

Wk;2i(L) = Wk;2i

Wk;2i+1(L) = Wk;2i+1 −B
T
k;2i,2i+1(L)Gk;2iRk;2i

Lower inverse (1/2)

116 / 125

◻ From ⎡⎢⎢⎢⎢⎢⎣
♣ 0 0

A10 ♣ 0

♣ A21 ♣

⎤⎥⎥⎥⎥⎥⎦

−1

=

⎡⎢⎢⎢⎢⎢⎣
♣ 0 0

♣A10♣ ♣ 0

♣ ♣A21♣ ♣

⎤⎥⎥⎥⎥⎥⎦
we see that the HSS-rank of the inverse of a lower triangular matrix is the
same as that of the original matrix.

◻ There are recursions to compute the HSS representation of the inverse of
a lower triangular in O(n) operations from that of the lower triangular
matrix.

Lower inverse (2/2)

117 / 125

GK;i = V T
K;iD

−1
K;iUK;i

Gk−1;i = W T
k;2iGk;2iRk;2i −

W T
k;2i+1Gk;2i+1Bk;2i+1,2iGk;2iRk;2i +

W T
k;2i+1Gk;2i+1Rk;2i+1

UK;i(L−1) = D−1K;iUK;i

VK;i(L−1) = D−TK;iVK;i

Rk;2i(L−1) = Rk;2i

Rk;2i+1(L−1) = −Bk;2i+1;2iGk;2iRk;2i +Rk;2i+1

Wk;2i(L−1) = Wk;2i −B
T
k;2i+1,2iG

T
k;2i+1Wk;2i+1

Wk;2i+1(L−1) = Wk;2i+1

Inverse

118 / 125

Note that

⎡⎢⎢⎢⎢⎢⎣
♣ A01 ♣

A10 ♣ A12

♣ A21 ♣

⎤⎥⎥⎥⎥⎥⎦

−1

=

⎡⎢⎢⎢⎢⎢⎣
♣ (♣A01 + ♣A21)Sv ♣

Sh(A10♣ +A12♣) ♣ Sh(A10♣ +A12♣)
♣ (♣A01 + ♣A21)Sv ♣

⎤⎥⎥⎥⎥⎥⎦
◻ So the HSS-rank of A−1 is the identical to the HSS-rank of A.
◻ We can assemble a fast algorithm for computing the HSS representation

of A−1 from that of A. Compute:

– LU factorization of A in HSS form;
– the HSS form of L−1 and U−1;
– the HSS form of U−1L−1 = A−1.

119 / 125

Concluding remarks

Displacement structure
SSS
HSS
General

Displacement structure

120 / 125

◻ Given a family of matrices does it have a useable displacement structure?
◻ Given a fast displacement structured family can we characterize the family

directly?
◻ Can we generalize displacement structure to sums of tensor products?
◻ What is special about the eigenvectors?
◻ Is there a general approach fast matrix–vector multiplies?
◻ Is there a general approach to super-fast algorithms?

SSS

121 / 125

◻ Very systematic theory that traces its roots back to complex analysis.
◻ Can we generalize it?
◻ See my SIAM ALA’18 talk on our web site.
◻ Structure of eigenvectors?

http://scg.ece.ucsb.edu

HSS

122 / 125

◻ Coherent derivation via sparse matrices (similar to SSS) for matrix–vector
multiply and linear system solution.

◻ Ad hoc methods for matrix–matrix multiply and LU factorization. Can we
do better?

◻ Closely related to the more general FMM representation.
◻ FMM representations change under multiplication which seems to rule out

fast exact factorization and inverse.
◻ See my afore mentioned SIAM ALA’18 talk on what we can potentially do.

General

123 / 125

◻ The big question in practice is tied closely to the exact inverse of
Cauchy-like matrices where the points are drawn from higher dimensions.

◻ These slides can be downloaded from our web-site
http://scg.ece.ucsb.edu

124 / 125

Thank You!

References

125 / 125

[1] Shivkumar Chandrasekaran, Patrick Dewilde, Ming Gu, T Pals, Xiaorui Sun, Alle-Jan van der Veen, and Daniel White. Some fast
algorithms for sequentially semiseparable representations. SIAM Journal on Matrix Analysis and Applications, 27(2):341–364,
2005.

[2] Shivkumar Chandrasekaran, Ming Gu, and Timothy Pals. A fast ulv decomposition solver for hierarchically semiseparable
representations. SIAM Journal on Matrix Analysis and Applications, 28(3):603–622, 2006.

[3] Shivkumar Chandrasekaran and Ali H Sayed. Stabilizing the generalized schur algorithm. SIAM Journal on Matrix Analysis and

Applications, 17(4):950–983, 1996.

[4] James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier series. Mathematics of

computation, 19(90):297–301, 1965.

[5] Patrick Dewilde and Alle-Jan van der Veen. Time-Varying Systems and Computations. Springer Science & Business Media, 1998.

[6] Israel Gohberg, Thomas Kailath, and Vadim Olshevsky. Fast gaussian elimination with partial pivoting for matrices with
displacement structure. Mathematics of Computation, 64(212):1557–1576, 1995.

[7] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comp. Phys., 73:325–348, 1987.

[8] Thomas Kailath, Sun-Yuan Kung, and Martin Morf. Displacement ranks of matrices and linear equations. Journal of

Mathematical Analysis and Applications, 68(2):395–407, 1979.

[9] V. Strassen. Gaussian Elimination is Not Optimal. Numerische Mathematik, 13:354–356, 1969.

	Introduction
	Outline of the Talk
	Examples of structured matrices
	
	Toeplitz & Vandermonde
	Cauchy & Banded
	Generalizations
	More questions

	Strassen-style algorithms
	
	Fast matrix multiplication
	Trading multiplies for additions
	Strassen-type formulas

	FFT and Toeplitz
	
	Discrete Fourier series
	FFT
	Circulant matrices
	FFT diagonalizes circulants
	Padding
	Toeplitz multiplication
	Any sized FFT
	Fast Toeplitz back substitution

	Fast classical polynomial arithmetic
	
	Multiplication
	Division
	Division
	Expansion of products
	Evaluation
	Lagrange sums
	Interpolation

	Displacement structure
	
	Historical context
	Toeplitz
	Vandermonde
	Cauchy and Pick
	Displacement operator
	Similarity transformations
	Recovery
	Displacement rank of inverse
	Gaussian elimination (1/3)
	Gaussian elimination (2/3)
	Gaussian elimination (3/3)
	Schur algorithm (1/2)
	Schur algorithm (2/2)
	Toeplitz to Cauchy
	Diagonal plus rank one
	Inverse (1/2)
	Inverse (2/2)
	Products
	Questions

	Low rank structure
	
	Simple rank structures
	Sparse matrices
	Sparsification (1/2)
	Sparsification (2/2)

	Sequentially Semi-Separable Representations
	
	Hankel blocks (1/2)
	Hankel blocks (2/2)
	Representation
	Controllability & Observability
	Banded matrices
	Matrix–vector multiply
	Diagonal representation (1/3)
	Diagonal representation (2/3)
	Diagonal representation (3/3)
	Inversion (1/2)
	Inversion (2/2)
	 (1/3)
	 (2/3)
	 (3/3)
	Multiplication
	Lower times lower
	Lower times upper (1/4)
	Lower times upper (2/4)
	Lower times upper (3/4)
	Lower times upper (4/4)
	Inverse of lower (1/2)
	Inverse of lower (2/2)
	LU factorization (1/4)
	LU factorization (2/4)
	LU factorization (3/4)
	LU factorization (4/4)
	Inverse

	Hierarchically semi-separable representations
	
	Fast multi-pole method
	Row and column Hankel blocks (1/6)
	Row and column Hankel blocks (2/6)
	Binary partition tree
	Row and column Hankel blocks (3/6)
	Row and column bases (4/6)
	Row and column Hankel blocks (5/6)
	Row and column bases (6/6)
	Row and column bases (1/3)
	Row and column bases (2/3)
	Row and column bases (3/3)
	Expansion coefficients (1/2)
	Expansion coefficients (2/2)
	Representation (1/2)
	Representation (2/2)
	Construction
	Matrix–vector multiply (1/4)
	Matrix–vector multiply (2/4)
	Matrix–vector multiply (3/4)
	Matrix–vector multiply (4/4)
	Multiply signal flow graph
	Solver (1/5)
	Solver (2/5)
	Solver (3/5)
	Solver (4/5)
	Solver (5/5)
	Multiplication (1/3)
	Multiplication (2/3)
	Multiplication (3/3)
	LU factorization (1/6)
	LU factorization (2/3)
	LU factorization (3/3)
	Lower inverse (1/2)
	Lower inverse (2/2)
	Inverse

	Concluding remarks
	
	Displacement structure
	SSS
	HSS
	General

	Thank you
	

	References
	References

