
SOCN - fast algorithms for dense structured matrices : Homework 2

Problem 1

Let ϕ ∈ {C \ 0}. Consider the matrix

Zϕ =


· · · ϕ

1

1
. . .

...

1

 ∈ CN×N

Determine an explicit expression for the eigendecomposition of Zϕ = V ΛV −1 and discuss how one can

efficiently compute the products V x and V −1x.

Solution. Observe that Zφ is a companion matrix with characteristic equation λn − φ = 0. Let ω̄n = e2πi/n.

If ϕ1/n is the principal n-th root of ϕ ∈ {C \ 0}, the eigenvalues and corresponding left-eigenmatrix entries

of Zφ can be expressed as λk = ϕ1/nω̄k−1n and wkl = 1√
n
ϕ(l−1)/nω̄

(k−1)(l−1)
n for k, l = 1, n, respectively. We

thus observe that the left-eigenmatrix is a column-scaled inverse DFT matrix, i.e.,

V −1 = W =
1√
n


1 1 1 · · · 1

1 ω̄ ω̄2 · · · ω̄n−1

1 ω̄2 ω̄3 · · · ω̄2(n−1)

...
...

...
. . .

...

1 ω̄n−1 ω̄(n−1)2 · · · ω̄(n−1)(n−1)




1

ϕ1/n

ϕ2/n

. . .

ϕ(n−1)/n

 = F ∗nD
−1
ϕ

We therefore have the eigendecomposition

Zϕ = (DϕFn)(ϕ1/nΩ)(DϕFn)−1,

where Ω = diag(1, ω̄n, . . . , ω̄
n−1
n ) Computing V x and V −1x can be done fast in O (n log n) as one simply

needs to apply a FFT in combination with a diagonal scaling.

Problem 2

Consider the problem of finding the best L2-approximation of a function through a linear combination of

cosines, i.e.,

inf
c∈Rn

(
f(θ)−

n∑
k=1

ck cos(kθ)

)
The entries of the normal equation Ac = b for this problem take on the form

akl =

∫ b

a

cos(kθ) cos(lθ)dθ, bk =

∫ b

a

cos(kθ)f(θ)dθ.

Make use of trigonometric identies to show that A ∈ Rn×n is the sum of a Toeplitz and a Hankel matrix.

Furthermore, verify that such matrices have low displacement rank for the displacement operator Yφ,δA −
AYγ,σ, where

Yφ,δ =


1

1
. . .

1 δ

+


φ 1

1
. . .

1


What is the displacement rank?
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Problem 3 SOCN - fast algorithms for dense structured matrices : Homework 2

Solution. The matrix A is the sum of a Toeplitz and a Hankel matrix, because

akl =

∫ b

a

cos(kθ) cos(lθ)dθ

=

∫ b

a

1
2 (cos(kθ) cos(lθ) + sin(kθ) sin(lθ)) dθ +

∫ b

a

1
2 (cos(kθ) cos(lθ)− sin(kθ) sin(lθ)) dθ

=

∫ b

a

1
2 cos((k − l)θ)dθ +

∫ b

a

1
2 cos((k + l)θ)dθ

= t(k − l) + h(k + l).

Evaluating the displacement operator we get something of the form:

Yφ,δA−AYγ,σ =


∗ ∗ ∗ · · · ∗
∗ ∗
∗ ∗
...

...

∗ ∗ ∗ · · · ∗


The right-hand-side is a rank 4 matrix. Hence, the displacement rank is 4.

Problem 3

Let A be a square non-singular matrix and suppose that

Ω

[
A G∗

F B

]
−
[
A G∗

F B

]
Λ =

[
R1

R2

] [
S1

S2

]∗
where Ω = diag(ω1, . . . , ωn) and Λ = diag(λ1, . . . , λn). By inserting Gauss transforms:

H1 =

[
I

−FA−1 I

]
, H2 =

[
I −A−1G∗

I

]
at appropriate locations in the above equation, find the corresponding displacement rank equation for the

Schur complement B − FA−1G∗.

Solution. We perform the manipulation:

H1ΩH−11 H1

[
A G∗

F B

]
H2 −H1

[
A G∗

F B

]
H2H

−1
2 ΛH2 = H1

[
R1

R2

] [
S1

S2

]∗
H2

The reduces to:

Ω

[
A

B − FA−1G∗

]
−
[
A

B − FA−1G∗

]
Λ =

[
R1

R2 − FA−1R1

] [
S1

S2 −G(A∗)−1S1

]∗
Hence B − FA−1G∗ satisfies the displacement equation

Ω̃(B − FA−1G∗)− (B − FA−1G∗)Λ̃ = R̃S̃∗,

where:

Ω̃ =

ω2

. . .

ωn

 , Λ̃ =

λ2 . . .

λn

 , R̃ = R2 − FA−1R1, S̃ = S2 −G(A∗)−1S1.
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Problem 4 SOCN - fast algorithms for dense structured matrices : Homework 2

Problem 4

Using displacement rank theory and the block matrix[
I T2
T1 0

]
to describe a procedure to multiply two Toeplitz matrices T1T2 in Θ

(
n2
)

flops.

Solution. The first observation we make is that computing T1T2 is equivalent to performing one step of

block-LU, since [
I T2
T1 0

]
=

[
I 0

T1 I

] [
I T2
0 −T1T2

]

The second observation we make is that

[
I T2
T1 0

]
is a matrix of low displacement rank, since

[
I T2
T1 0

]
− Z2n,↓

[
I T2
T1 0

]
Z>2n,↓ =



1 τ0 τ−1 τ−2 · · · τ−n+1

0 τ1
0 τ2

. . .
...

0 τn−1
t0 t−1 t−2 · · · t−n+1 1

t1
t2
...

tn−1



=



1 τ0 0 1

0 τ1 0 0

0 τ2 0 0
...

... 0 0

0 τn−1 0 0

t0 1 1 0

t1 0 0 0

t2 0 0 0
...

... 0 0

tn−1 0 0 0




1 0 0 · · · 0 0 0 0 · · · 0

0 0 0 · · · 0 1 0 0 · · · 0

0 t−1 t−2 · · · t−n+1 0 0 0 · · · 0

0 0 0 · · · 0 0 τ−1 τ−2 · · · τ−n+1



=

[
R1

R2

] [
S1

S2

]>
The third observation we make is that the displacement operators Z2n,↓ and Z>2n,↓ are lower and upper

triangular, respectively. Thus one can obtain a compact representation (O (n) numbers) of the product of

two Toeplitz matrices by running the Schur algorithm. The time complexity of this operation is O
(
n2
)
.
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Problem 4

Determine an explicit expression for the inverse of

A =



1

a1 1

a2 1

a3
. . .

. . . 1

an−1 1


What can be said about the ranks of the lower off-diagonal blocks?

Solution. We use von Neumann series (I −X)−1 = I +X +X2 +X3 + . . . to evaluate inverse of A. Write

A = I + Z↓diag(a), a = (a1, a2, . . . , an)

Hence, taking note of the nilpotency of Z↓, we may write

A−1 = (I − (−Z↓diag(a)))−1

= I − Z↓diag(a) + (Z↓diag(a))2 − (Z↓diag(a))3 + . . .+ (−1)n−1(Z↓diag(a))n−1

=



1

1

1

1
. . .

1


−


a1

a2
a3

. . .

an−1


+


a1a2

a2a3
. . .

an−2an−1



−

a1a2a3 . . .

an−3an−2an−1


+ . . .+ (−1)n−1


a1a2 · · · an−1


Hence,

A−1ij =


0 i < j

1 i = j

(−1)i−j
∏i−1
k=j ak i > j

As proven in class, the ranks of the off-diagonal (i.e., Hankel) blocks of a matrix is invariant under inversion.

We recognize this property also in the inverse of A. The upper off-diagonal blocks of the inverse are of zero

rank, whereas the lower off-diagonal blocks are of unit rank, since

A−1(i+ 1 : n, 1 : i) =


ai

−aiai+1

...

(−1)n−iaiai+1 · · · an−1

 [(−1)n−i−1ai−1 · · · a1 −1
]
.
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