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Definition 1. A matrix is a rectangular array of numbers (usually either real or complex).

The set of all real matrices with m rows and n columns of real numbers will be denoted as Rm�n.
Similarly Cm�n for complex matrices. We will use capital Roman letters to denote matrices.
Small Roman letters will denote matrices with only one column. Matrices with one row will be
denoted by taking the transpose of matrices with one column, where the transpose is denoted by
superscript T and is defined as

Ai;j
T =Aj;i:

1 Matrix arithmetic

Matrix addition, A=B+C, is defined as

Ai;j=Bi;j+Ci;j ;

which costs mn additions. We will refer to this loosely as O(mn) flops and ignore the cost of
memory access (not because it is unimportant).

Scalar multiplication A=�B is defined as

Ai;j=�Bi;j

and takes mn multiplications.

For B 2Rm�k and C 2Rk�n, matrix multiplication A=BC is defined as

Ai;j=
X
l=1

k

Bi;lCl;j

and takes mkn multiplications and m(k¡1)n additions, which is loosely denotes as O(mkn) flops.
If the matrices are square then we have O(n3) flops.

Strassen suprised the world by showing that you can decrease the cost substantially.

2 Fast matrix multiplication

We give a brief review of the ideas behind Strassen's algorithm. Consider AB=C as a block-
matrix product �

A11 A12

A21 A22

��
B11 B12

B21 B22

�
=
�
C11 C12

C21 C22

�
with

Cij=Ai1B1j+Ai2B2j:
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We know that multiplying two n� n matrices by the naive method costs 2n3 flops while adding
two such matrices (or scalar multiplication) only costs n2 flops. So the idea is to trade block matrix
multiplications (which is 8 for the naive method) for block matrix additions (which is 4 for the
naive method). Towards that end consider the following template for the algorithm

Ml=

0@ X
i;j=1

2

�ij
l Aij

1A0@ X
i;j=1

2

�ij
l Bij

1A; l=1; : : : ; L;

and

Cij=
X
l=1

L

�ij
l Ml; i; j=1; 2:

The goal is to find scalars �ijl , �ijl and �ijl such that Cij is correct. L=7 is the smallest decrease
one can hope for and the one that Strassen was successful with.

We see that we have

L� (8+4)= 12L

unknown scalars in total, and we have

16� 4= 64

equations in total when we match AijBpq on both sides of the equation for Cij. However the
system of equations is non-linear so one has to be careful in the search for a solution (they may
be inconsistent for example). Strassen found one using just �1 and 0 for L=7.

Note that these tri-linear equations are very special (for example, their coefficients are in f�1; 0g,
and they satisfy many symmetries.).

Assuming that the cost to multiply two n�n matrices in Strassen's method is f(n), we have

f(n)6 7f(n/2)+ cn2:

Then using the estimation techniques in section 3 we obtain that Strassen's method requires
O(nlog27) flops! Strassen's method is actually useable in practice; the constant hidden in the big-
O notation are not too bad and the numerical stability is not an issue. However, the gains can be
marginal, and it has not proven popular in practice on modern hardware. It is conjectured that
for any ">0 there is a fast matrix-matrix multiplication algorithm with asymptotic cost O(n2+").
The current world record is "> 0.3, but these algorithms are quite impractical so far and we will
say not more about them in these notes.

3 Recursive inequalities
Consider a recursive upper bound of the form

f(n)6 cf(n/2)+x(n); n2N:

We assume that f(n)> 0, and see that we can expand the above expression, for n=2m, into

f(n)6 cm+1f(1)+
X
l=0

m

clx(n/2l):

Now suppose that x(n)= dnp log2kn. Then the sum we need to bound is:X
l=0

m

cl d
np

2pl
log2k

n

2l
= dnp

X
l=0

m �
c
2p
�
l
(log2n¡ l )k

6 dnp log2kn

¡ c

2p

�
m+1¡ 1
c

2p
¡ 1

; c > 2p;

6 ecm log2kn:
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So the total bound is

f(n)6 gcm log2kn= gnlog2c log2kn

for some constant g if c> 2p. If c=2p the bound is

f(n)6 gnp log2k+1n:

If c< 2p then

f(n)6 gnp log2k n:

Aside: Mostly we only need bounds on sums of the formX
n

nk logpn

and these can be upper and lower bounded by relating it to the integralZ
xk lnpxdx

which does have a closed form expression (for help see CRC Standard Mathematical Tables and
Formulae, editor Daniel Zwillinger, for example).

4 Bit peeking
Looking at Strassen's method one might wonder if we can further reduce the number of multipli-
cations by looking at the bits representing the numbers of the matrices directly. If the number of
bits are finite (which is not assumed in the Strassen case) then one can indeed cheat and produce
an O(n2) �flops� matrix multiplication algorithm. But all that happens in this case is that an extra
factor of n goes into the hidden constant. This is not an issue unless one is interested in proving
lower bounds for complexities. In these cases one must either work with full Turing complexity,
or, work in the real field without bit peeking.

It is easy to see the technique in the case of 2 multiplies, xy and uv. Let's suppose that all of these
4 numbers have finite length base representations: x=2mxxmx+ ���+2nxxnx formx>nx, etc.. Then
we see that xy only occupies bit positions frommx+my+1 to nx+ny at most. Therefore it follows
that there exists integers a;b; c; d, such that z=(2ax+2by)(2cu+2dv) has the bit representations of
xy and uv in non-overlapping positions inside the product z. Therefore 4 products can be reduced
to �1� multiplication. Note that the Turing level complexity has not decreased via this approach.

5 Gaussian elimination
One of the oldest and most used algorithms is Gauss's elimination method. We will consider the
equivalent A=LU factorization of a square matrix. This is best described recursively using block
matrices as

A=
�
A1=L1U1 B

C D

�
=

 
L1 0

CU1
¡1 I

! 
U1 L1

¡1B

0 D¡CU1¡1L1¡1B

!
;

when A1 has an LU factorization. The sub-matrix

S=D¡CU1¡1L1¡1B

is smaller than A and is called a Schur complement of A and will play a vital role. Assuming that
we can compute an LU factorization of S=L2U2 we obtain an LU factorization of A

A=

 
L1 0

CU1
¡1 L2

! 
U1 L1

¡1B
0 U2

!
:
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To make this algorithm complete we note that�
A 0
B C

�¡1
=

 
A¡1 0

¡C¡1BA¡1 C¡1

!
;

and similarly for (block) upper triangular matrices. This gives a fully recursive recipe for computing
the LU factorization of a matrix.

Using the same recursive technique one can estimate that the cost of computing the LU factoriza-
tion of an n�n matrix (assuming it exists) is the same as matrix-matrix multiplication! So if we
do not use Strassen like techniques the cost is O(n3) flops.

6 Goals

Our goal in this course is to consider fast algorithms for solving linear equations Ax= b, where
A 2Rn�n. In particular we will concentrate on direct methods like Gaussian elimination. The
goal is to find x in faster than O(n3) flops, while producing practical algorithms. Algorithms of a
purely theoretical bent will not be given a lot of space and time.

Due to the close relationship between solving Gaussian elimination and fast matrix multiplication,
we will also consider the latter. Furthermore it is possible to solve equations without appealing to
division at all. For example if kAk< 1 in any sub-multiplicative norm and (I ¡A)x= b, then

x=
X
n=0

1

An b:

In fact there exist coefficients �k dependent only on A (not b) such that

x=
X
k=0

n

�kA
k b;

when A2Rn�n. These ideas form the heart of iterative methods for solving Ax= b as it is possible
to design fast solvers as long as Ak b and the �k's can be computed quickly. However iterative
methods have their own issues in general, and so we will pay a lot more attention to designing fast
direct solvers when possible.

Moreover given the practical difficulties of accelerating generic matrix-matrix multiplication, we
will turn our attention to families of matrices that have special patterns. Here a lot of progress
has been made and they have yielded algorithms of great practical significance.

7 Fourier

The Fourier series has played a significant role in human history (even before Fourier) and there
is a matrix that goes along with it. Let !n= exp

¡
�
2�

n

�
, where �2=¡1 and

exp(z)=
X
n=0

1
zn

n!
= ez:

Let

F [n] = 1
n

p

0BBBBBBBBBBBBBB@

!n
0�0 !n

0�1 !n
0�2 � � � !n

0�(n¡1)

!n
1�0 !n

1�1 !n
1�2 � � � !n

1�(n¡1)

!n
2�0 !n

2�1 !n
2�2 : : : !n

2�(n¡1)

��� ��� ��� ���
!n
(n¡1)�0

!n
(n¡1)�1

!n
(n¡1)�2 � � � !n

(n¡1)�(n¡1)

1CCCCCCCCCCCCCCA;
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where in general

Fi;j[n] =!n
ij ; i; j=0; : : : ; n¡ 1:

This family of matrices has many interesting properties. Observe that for any i

X
j=0

n¡1

!n
i�j= !n

i�n¡ 1
!n
i ¡ 1

=0;

if !ni =/ 1 and n if !ni =1.

Also note that

!n= exp
�
¡�2�

n

�
=!n

n¡1=/ 1:

From these it follows that

FH[n]F [n] = I

which shows that F is a unitary matrix and superscript H denotes the Hermitian transpose of a
matrix, Ai;jH =Aj;i.

For amusement (exercise) show that

F 2[n] =

0BBBBBBBBBB@
1 0 � � � � � � 0
0 0 � � � 0 1
��� ��� � �� � �� 0
��� 0 � �� ���
0 1 0 � � � 0

1CCCCCCCCCCA=
�
1 0
0 E[n¡ 1]

�
;

where E is called the reverse identity matrix.

From this it follows that

F 4[n] = I:

From this you can infer the eigenvalues of F [n]. Much harder is to find an eigenbasis (see �On
the eigenvectors of Schur's matrix,� by Patrick Morton in J. Number Theory , 1980). For Fourier
transforms Hermite polynomials can be chosen as an eigenbasis (same eigenvalues).

One can compute F [n]x in O(n log2n) flops using a technique attributed to Gauss and Cooley &
Tukey. We will present this as a block matrix factorization when n=2m. The general case will be
presented later.

Define �[2m], the inverse of the perfect shuffle permutation

�[2m]

0BBBBBB@
x0
x1
���

x2m¡1

1CCCCCCA=

0BBBBBBBBBBBBBBBBBBBBBB@

x0
x2
���

x2m¡2
x1
x3
���

x2m¡1

1CCCCCCCCCCCCCCCCCCCCCCA
=
�
ye
yo

�
:

Define the diagonal matrix


[m] =

0BBBBBBBB@
!2m
0

!2m
1

�� �
!2m
m¡1

1CCCCCCCCA:
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Then it turns out that the following block unitary factorization holds:

F [2m] �T [2m] = 1
2

p
�
I 
[m]
I ¡
[m]

��
F [m]

F [m]

�
:

Using this it immediately follows that by exploiting sparsity in the above equation recursively we
can do the multiplication F [2m]x in O(m2m) flops. We just need to show that the above formula
is indeed correct.

First consider the even-numbered columns of F [2m] when 06 i <m:

Fi;2j[2m] =
1
2m

p !2m
2ij= 1

2m
p exp

�
�
2�ij
m

�
= 1

2m
p !m

ij= 1
2

p Fi;j[m];

and

Fm+i;2j[2m] =
1
2m

p !2m
(m+i)2j= 1

2m
p exp

�
�
2�ij
m

�
= 1

2
p Fi;j[m]:

This proves the first block column of the identity. Next consider the odd-numbered columns of
F [2m] when 06 i <m:

Fi;2j+1[2m] =
1
2m

p !2m
i(2j+1)= 1

2m
p exp

�
�
2�i
2m

�
exp
�
�
2�ij
m

�
= 1

2
p !2m

i Fi;j[m];

and

Fm+i;2j+1[2m] = 1
2m

p !2m
(m+i)(2j+1)= 1

2m
p exp(��(2j+1)) exp

�
�
2�i
2m

�
exp
�
�
2�ij
m

�
= ¡ 1

2
p !2m

i Fi;j[m];

which is the second block column of the identity to be proven.

We will refer to this algorithm loosely as the FFT and note that there are many other variants of it.

Since F¡1[n] = FH[n], the above algorithm is easily modified to handle the inverse of the FFT
too. Note that this algorithm depends critically on finding a factorization of the matrix where
each factor is itself sparse (or at least recursively so). In general we cannot expect our factors to
be both sparse and unitary, so we now turn our attention to sparse matrices in general.

8 Sparse matrices
A matrix A2Rn�n is said to be sparse if the number of non-zero entries in A is much smaller
than n2. Note that it is trivial to come up with a fast algorithm for Ax if there is a simple way to
recall only the non-zero entries in a row of the matrix. In that case the number of multiplications
will be exactly the number of non-zeros of A and we have a fast algorithm.

For example suppose A is a tri-diagonal matrix:

A=

0BBBBBBBBBBBBBBBB@

a1;1 a1;2 0 � � � � � � 0
a2;1 a2;2 a2;3 0 � � � 0
0 a3;2 a3;3 �� � �� � ���
��� 0 �� � �� � �� � 0
��� ��� �� � �� � �� � an¡1;n
0 0 � � � 0 an;n¡1 an;n

1CCCCCCCCCCCCCCCCA
:

Then

(Ax)i=
X

j=max(1;i¡1)

min(n;i+1)

ai;j xj;
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and this can be evaluated in at most O(n) flops.

The harder question is how to solve Ax=b quickly when A is sparse. The key idea is to do Gaussian
elimination while making sure not to try and eliminate entries of the matrix that are already 0. Note
that an entry might start as a 0 but then during the process of Gaussian elimination proceed to fill-
in with a non-zero, in which case it might have to be eliminated further in the process. So estimating
the complexity can be quite difficult based on the sparsity pattern of the starting matrix A.

As an example consider the above tri-diagonal matrix A. The first step of Gaussian elimination
only requires 3 flops irrespective of the size n as there is at most one non-zero in the first column
below the (1; 1) entry. The new Schur complement is still a tri-diagonal matrix:0BBBBBBBBBBBBBBBBBB@

a1;1 a1;2 0 � � � � � � 0
0 a2;2¡ a2;1a1;2

a1;1
a2;3 0 � � � 0

0 a3;2 a3;3 �� � �� � ���
��� 0 �� � �� � �� � 0
��� ��� �� � �� � �� � an¡1;n
0 0 � � � 0 an;n¡1 an;n

1CCCCCCCCCCCCCCCCCCA
:

Therefore we can proceed to recursively compute the LU factorization in O(n) flops, and solve
Ax= b also in O(n) flops.

Note that in this case all zeros outside the tri-diagonal band are preserved during Gaussian elim-
ination. We say that the matrix has no fill-in.

The amount of fill-in can be highly sensitive to the ordering of the rows and columns of the matrix.
For example consider the arrow-head matrix

A=

0BBBBBBBBBB@
a1;1 0 � � � 0 a1;n
0 a2;2 �� � ��� a2;n

��� �� � �� � 0 ���
0 : : : 0 an¡1;n¡1 an¡1;n
an;1 an;2 � � � an;n¡1 an;n

1CCCCCCCCCCA:

It is easy to check that in this ordering there is no fill-in during Gaussian elimination and we can
compute the LU factorization in O(n) flops. However if we reverse the rows and columns and
consider a sparsity pattern of the form

F =

0BBBBBBBBBB@
f1;1 f1;2 � � � � � � f1;n
f2;1 f2;2 0 � � � 0
��� 0 �� � �� � ���
��� ��� �� � �� � 0

fn;1 0 � � � 0 fn;n

1CCCCCCCCCCA;

then it is easy to check that during Gaussian elimination everything will fill-in and the cost balloons
up to O(n3) flops. Unfortunately finding the optimal ordering of the rows and columns is known
to be an NP-complete problem [M.Yannakakis, 1981]. There are lots of good heuristics that can
work well sometimes. However it is best for the user to find a good ordering rather than depend
on the heuristics.

There are lots of results in this venerable area, but we will deal with sparse matrices as they arise
in the course on a case-by-case basis.

9 Shift-invariant structures
Shift-invariance is a very popular engineering tool to manage complexity. Exponential functions
behave particularly nicely under shifts:

ex+a= ea ex:
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Unsurprisingly exponential transforms (Fourier, Laplace, etc.) play a key role in practice. The
subject comes along with a family of structured matrices that are related to the Fourier matrix.

9.1 Circulant structure

A n�n matrix C is said to be circulant if

Cij= c(i¡j)modn;

for some column vector c. We will sometimes denote this explicitly as

C =Circ[c] =

0BBBBBBBBBBBBBB@

c0 cn¡1 � � � � � � c2 c1
c1 c0 cn¡1 c2
c2 c1 c0 �� � ���
��� �� � �� � �� � ���

cn¡2 c1 c0 cn¡1
cn¡1 cn¡2 � � � c2 c1 c0

1CCCCCCCCCCCCCCA:

The product Circ[c]x is sometimes referred to as the periodic or circular convolution of c and x

(c~x)i=
X
k=0

n¡1

c(i¡k)modnxk:

Consider the circular shift down matrix

Z[n] =

0BBBBBBBBBBBB@
0 � � � � � � 0 1
1 0 ��� 0
0 1 �� � ��� ���
��� �� � �� � 0 ���
0 � � � 0 1 0

1CCCCCCCCCCCCA=Circ[e1];

which is a circulant permutation matrix, and e1 is a poor short-hand for the second column of I[n],
the n�n identity matrix. Note that

Circ[c] =
X
k=0

n¡1

ckZ
k[n]:

From this polynomial representation of circulant matrices we see that the key is to understand the
eigendecomposition of Z[n]. Luckily this is known completely in terms of the discrete Fourier series.

9.1.1 Eigenstructure of Z[n]

Let

�[n] =

0BBBBBBBB@
!n
0

!n
1

�� �
!n
n¡1

1CCCCCCCCA:

Note that �[n] is closely related to 
[n/2], but they are not the same. Then it turns out that

Z[n] =F [n] �[n]FH[n]:
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The verification is essentially an application of equation 7:

(Z[n])i;j = 1
n

X
k=0

n¡1

!n
i�k!n

k !n
k�j ; 06 i; j <n;

= 1
n

X
k=0

n¡1

!n
k(1+i¡j)

which is not 0 (actually 1) iff !n
1+i¡j=1, which happens iff 1+ i¡ j= qn for some integer q. For

q=0 we have j= i+1 as the only solution set, and for q=1, the solution set is i=0 and j=n¡1.
The constraint 06 i; j <n, prevents any other solutions.

9.1.2 Circulant and FFT

We can see from equation 9.1 that

Circ[c] =F [n]

 X
k=0

n¡1

ck�k[n]

!
FH[n] =F [n]Diag[ĉ]FH[n]

where

Diag[ĉ] =

0BBBBBB@
ĉ0

ĉ1
�� �

ĉn¡1

1CCCCCCA
and

ĉi=
X
k=0

n¡1

ck exp
�
�
2�ik
n

�
:

Therefore

ĉ= n
p

F [n] c;

and can be computed rapidly with an FFT. Hence Circ[c] x can be computed for the price of 3
FFT's plus O(n) flops when n=2m.

When that is not the case we can embed the circulant matrix into a larger circulant matrix of size
2m:

Circ

240@ c
�

c1:n¡1

1A35� x
0

�
=
�

Circ[c]x
�

�
:

Note that to be efficient we choose the smallest integer m such that 2n¡ 16 2m.
As an example the embedding in the n=3 case:0BBBBBBBBBBBBBBBBBBBBBB@

c0 c2 c1 c2 c1
c1 c0 c2 c1 c2
c2 c1 c0 c2 c1

c2 c1 c0 c2 c1
c2 c1 c0 c2 c1

c2 c1 c0 c2 c1
c1 c2 c1 c0 c2
c2 c1 c2 c1 c0

1CCCCCCCCCCCCCCCCCCCCCCA
:

Hence for every n�n circulant matrix, whether n=2m or not, we can multiply with a vector in
O(n log2n) flops.
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9.2 Toeplitz structure

A bit more common than periodic convolutions is ordinary convolutions and these are related to
Toeplitz matrices.

A matrix T is said to be Toeplitz if

Tij= ti¡j

for some column vector t indexed over the integers. We will denote this as

T =Toep[t] =

0BBBBBBBB@
t0 t¡1 t¡2 � � �
t1 t0 t¡1 �� �
t2 t1 �� � �� �
��� �� � �� � �� �

1CCCCCCCCA:
A matrix H is said to be Hankel if

Hij=hi+j

for some column vector h indexed over the integers. We will denote this as

H =Hank[h] =

0BBBBBBBB@
h0 h1 h2 � � �
h1 h2 � ��
h2 � �� � ��
���

1CCCCCCCCA:

Let E[n] denote the n�n Hankel matrix with one's on the anti-diagonal and zeros every where else.

Note that

Circ[c] =Toep

266666666666666666666664

0BBBBBBBBBBBBBBBBBBBBBB@

c1
c2
���

cn¡1
c0
c1
���

cn¡1

1CCCCCCCCCCCCCCCCCCCCCCA

377777777777777777777775
:

Also note that multiplying by E converts a Toeplitz matrix to a Hankel matrix.

A structure to note is that

Diag
h
exp
�
¡��
n
i2
�i

i=0

n¡1
F [n]Diag

h
exp
�
¡��
n
j2
�i

j=0

n¡1
=
�

exp
¡
¡��

n
(i¡ j)2

� �
fi;j=0g

n¡1

which is Toeplitz. So the Fourier matrix can be row and column scaled to reveal a Toeplitz matrix.

9.2.1 Fast Toeplitz-vector multiply

To multiply a m�n Toeplitz matrix with a column vector use the circulant embedding:

Circ[t]
�
x
0

�
=
�

�
Toep[t]x

�
:
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For example the 5� 3 case: 0BBBBBBBBBBBBBBBBBB@

t¡2 t4 t3 t2 t1 t0 t¡1

t¡1 t¡2 t4 t3 t2 t1 t0
t0 t¡1 t¡2 t4 t3 t2 t1
t1 t0 t¡1 t¡2 t4 t3 t2
t2 t1 t0 t¡1 t¡2 t4 t3
t3 t2 t1 t0 t¡1 t¡2 t4
t4 t3 t2 t1 t0 t¡1 t¡2

1CCCCCCCCCCCCCCCCCCA
:

Therefore we can also multiply any n�n Toeplitz matrix into a column vector in O(n log2n) flops.
Note that this embeds the Toeplitz matrix in the bottom left corner of a circulant matrix.

Also note that this means we can extend the FFT to any n=/ 2k because F [n] can be written as
diagonal times Toeplitz times diagonal in O(n) flops. So we now have an FFT with no limitation
on the size.

Everything extends to Hankel matrices because of E[n].

9.3 Triangular Toeplitz matrices

Let

Z#[n] =

0BBBBBBBBBBBB@
0 0 � � � � � � 0
1 0 �� � ���
0 1 �� � �� � ���
��� �� � �� � �� � 0
0 � � � 0 1 0

1CCCCCCCCCCCCA
n�n

denote the shift-down matrix. Then a n�n lower triangular Toeplitz matrix can be written as

Toep[t] =
X
k=0

n¡1

tkZ#
k[n] =

X
k=0

1

tkZ#
k[n];

which shows their close relationship with polynomials.

From this expression it is easy to see that the product of 2 lower triangular Toeplitz matrices is
also lower triangular Toeplitz. In fact they can be computed rapidly as follows. If ak= bk= ck=0
for 0>k, and

Toep[a]Toep[b] =Toep[c];

then it follows that from 0BBBBBB@
a0 0 � � � 0
a1 a0 �� � ���
��� �� � �� � 0

an¡1 � � � a1 a0

1CCCCCCA
0BBBBBB@

b0
b1
���

bn¡1

1CCCCCCA=
0BBBBBB@

c0
c1
���

cn¡1

1CCCCCCA;

c can be computed O(n log2n) flops using fast Toeplitz-vector multiplication.

Conversely if c is known then b can also be computed rapidly via fast forward substitution using
the standard 2� 2 recursive procedure with cost

f(n) 6 2f(n/2)+ cn log2n;
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which yields a complexity of O(n log22n) flops. Note that the only reason the forward multiply is
cheaper is because we first embed in a large circulant matrix, but that technique does not seem
availble here, so one does need to be careful of the exact power of the logarithmic factor in these
estimates.

9.4 Fast solvers

From equation 9.1.2 it is obvious that we can solve Circ[c]x= b in O(n log2n) flops, where b2Rn.
However Toep[t] x = b seems harder to solve quickly by embedding techniques, except for the
triangular case which is more straight forward.

Let Z"=Z#T denote the up-shift matrix. These two matrices don't exactly commute, but do up to
low-rank. It is easy to see (exercise) that

rank(Z"
pZ#

q¡Z#
qZ"

p)6 2min (p; q):

The difficulty of fast algebraic algorithms for finite dimensional Toeplitz matrices can be related
to this issue.

10 Fast Polynomial Arithmetic

Circulant and triangular Toeplitz matrices are closely related to polynomial arithmetic as they
themselves are polynomials in the �Z� matrix. We only point out some simple connections here.
Note that this is a vast field and we make no effort to be comprehensive or modern.

To the polynomial

p(x)= p0+ p1x+ p2x
2+ � � �+ pnx

n

we associate the lower banded Toeplitz matrix

LToep[p] =

0BBBBBBBBBBBBBBBB@

p0 0 � � �
p1 p0 �� �
��� p1 �� �
pn �� �
0 pn
��� �� � �� �

1CCCCCCCCCCCCCCCCA
:

Note that we do not associate a size with this matrix. Then the product of 2 polynomials can be
represented as 0BBBBBBBBBBBBBBBB@

a0 0 � � �
a1 a0 �� �
��� a1 �� �
an �� �
0 an
��� �� � �� �

1CCCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBBB@

b0 0 � � �
b1 b0 �� �
��� b1 �� �
bm �� �
0 bm
��� �� � �� �

1CCCCCCCCCCCCCCCCA
=

0BBBBBBBBBBBBBBBB@

c0 0 � � �
c1 c0 �� �
��� c1 �� �

cn+m �� �
0 cn+m
��� �� � �� �

1CCCCCCCCCCCCCCCCA
:

Note that c can be computed from a and b in O(max (n;m) log2(max (m;n))) flops as the product
of 2 lower triangular Toeplitz matrices.
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The problem of polynomial division can be presented as the converse problem

0BBBBBBBBBBBBBBBBBBBB@

a0 0 � � �
a1 a0 �� �
��� a1 �� �

an¡1 ��� �� �
an an¡1
0 an �� �
��� �� � �� �

1CCCCCCCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBBB@

b0 0 � � �
b1 b0 �� �
��� b1 �� �
bm ��� �� �
0 bm
��� �� � �� �

1CCCCCCCCCCCCCCCCA
+

0BBBBBBBBBBBBBBBB@

r0 0 � � �
r1 r0 �� �
��� r1 �� �

rn¡1 ��� �� �
0 rn¡1
��� �� � �� �

1CCCCCCCCCCCCCCCCA
=

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

c0 0 � � �
c1 c0 �� �
��� c1 �� �

cn¡1 ��� �� �
cn cn¡1
cn+1 cn �� �
��� cn+1c �� �

cn+m ��� �� �
0 cn+m
��� �� � �� �

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

where we are given the polynomial c and the divisor a, and the goal is to find the quotient b and
the residual r. If we drop the first n rows and keep only m+1 rows after that we get

0BB@ an an¡1
0 an �� �
��� �� � �� �

1CCA
0BBBBBBBBBBBBBBBB@

b0 0 � � �
b1 b0 �� �
��� b1 �� �
bm ��� �� �
0 bm
��� �� � �� �

1CCCCCCCCCCCCCCCCA
+

 
0 rn¡1
��� �� � �� �

!
=

0BBBBBBBB@
cn cn¡1
cn+1 cn �� �
��� cn+1c �� �

cn+m ��� �� �

1CCCCCCCCA;

and we see that the first column gives us the quotient b in O(m log22m) flops. Then the residual
can be computed by fast polynomial multiplication of the first n rows of the above equation. Note
that the existence of b and r follows from the known facts about lower triangular Toeplitz matrices
(or from standard polynomial algebra).

The problem of fast polynomial evaluation at multiple points and the converse problem of finding
the polynomial from its evaluation at multiple points we set aside for now and go back to the
question of representation of Toeplitz matrices and their associated displacement structures.

11 Iterative methods

We say how easy it can be to design fast matrix-vector multiplication routines for several classes
of matrices. Naturally the question arises whether that alone can be used to speed up the solution
of Ax= b, to something faster than O(n3) flops. The answer is in principle yes, but it does not
always yield the fastest possible solver. We show one such technique here.

Let A=AT be non-singular. Given the RHS b consider the associated Krylov matrix

K[A; b] =
¡
b Ab A2 b � � � An¡1b

�
:

We will make the generic assumption that K[A; b] is also non-singular (so b is not special). Then
we look for a solution x=K[A; b] z and observe that

KT [A; b]AK[A; b] =

0BBBBBBBBBBBB@
bTAb bTA2 b bTA3b bTA4b � � �
bTA2 b bTA3b � �� � ��
bTA3b � �� � ��
bTA4b � ��
���

1CCCCCCCCCCCCA;
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is a Hankel matrix. So if we can solve the Hankel system

KT [A; b]AK[A; b]z=KT [A; b] b

fast, say in O(n log22n) flops, then the total cost of the algorithm will be at most the cost of O(n)
matrix-vector multiplies.

In a true iterative method the solution (or at least the residual) is tracked for smaller leading
principal sub-matrices of the Hankel block and sometimes you can get early convergence, requiring
much less than O(n) multiplies. This savings unfortunately depends on the spectral properties of
A making it hard to control in practice.

However, in practice, the primary reason for using such iterative methods is to avoid the large
amounts of fill-in during Gaussian elimination of sparse matrices.

12 Displacement structure

We mentioned earlier that Toeplitz matrices can be written as polynomials in Z# and its tranpose
Z". However, in the finite dimensional case, these two matrices do not commute. So this leads us
to examine the commutator of a Toeplitz matrix T =Toep[t] with Z#:

Z#T ¡TZ#=

0BBBBBBBBBBBB@
¡t¡1 ¡t¡2 � � � ¡t¡(n¡1) 0
0 0 0 � � � t¡(n¡1)

0 0 �� � �� � t¡(n¡2)

��� ��� �� � ���
0 0 0 t¡1

1CCCCCCCCCCCCA;

which is rank 2. However note that the RHS has lost ti for 06 i as the operator L[T ]=Z#T ¡TZ# has
the lower triangular Toeplitz matrices in its nullspace. Instead we look at the closely allied operator

T ¡Z#TZ"=

0BBBBBB@
t0 t¡1 t¡2 � � �
t1 0 0 � � �
t2 0 �� �
��� ���

1CCCCCCA;

which is also rank 2 but has the virtue of fully specifying T just from the RHS. In particular the
Sylvester-type operator L[T ] =T ¡Z#TZ" is invertible.

However what is truly amazing is how well these operators interact with Gaussian elimination. It
helps to be a bit more general first. So we consider displacement operators of the form

L[F ;G][A] =A¡FAGT ;

where to ensure easy invertibility of L[F ;G] we assume that F and G are lower-triangular matrices
and that Fi;iGj;j=/ 1 for all i; j. It is easy to check that this guarantees that L[F ;G] is non-singular.
We are interested in the case when L[F ;G][A] =XY T is a low-rank (compared to the size of A)
matrix. In particular we want to know if the Schur complement of A has a similar structure.

12.1 Sylvester type equations

We first step aside to look at linear operators of the form

L[A;B][X] =X ¡AXBT =Y :

14



If X 2Rn�n then converting this into a standard form of the type �Ax= b� and then solving via
Gaussian elimination would lead to O(n6) flops. By using the �iterative� method trick we can
reduce it to O(n5) flops. If A and B are structured matrices such that AXBT can be computed
in O(n�) flops, then the cost would actually be O(n�+2) flops. However, if we can compute the
spectral decompositions of A and B then any further operations can be reduced to O(n3) flops.

To see this we assume that both A and B are lower triangular matrices. Then:

 
� x2

T

x1 X2

!
¡
�
� 0
b A2

� 
� x2

T

x1 X2

! 
� cT

0 B2
T

!
=

 
 y2

T

y1 Y2

!
 

� x2
T

x1 X2

!
¡
 

�� �x2
T

b�+A2x1 bx2
T +A2X2

! 
� cT

0 B2
T

!
=

 
 y2

T

y1 Y2

!
 

� x2
T

x1 X2

!
¡

 
��� � (�cT +x2TB2T)

(b�+A2x1)� (b�+A2x1)cT +(bx2T +A2X2)B2T

!
=

 
 y2

T

y1 Y2

!
;

and we can construct a recursive algorithm as follows:

� =  
1¡��

x1 = (I ¡ �A2)¡1(y1+ b��)
x2 = (I ¡�B2)¡1(y2+ c��)

X2¡A2X2B2
T = Y2+ �bcT +A2x1cT + bx2TB2T :

One can see that as long as ��=/ 1 there exists a unique solution and we can now find it in O(n3)
flops. However this trick of reducing the problem to the case when A and B are triangular breaks
down when there are more terms:

X ¡AXBT ¡CXDT =Y :

In this case we need to assume that A;B;C;D are already lower-triangular. In fact understanding
the structure of this linear operator remains a significant open problem.

12.2 Schur algorithm

Now we turn our attention back to displacement structured matrices (equation 12) and their fast
LU factorization.

Block-partitoning the equation we see that

 
� bT

c D

!
¡
�
' 0
f F2

� 
� bT

c D

! 
 gT

0 G2
T

!
=

 
x1
T

X2

!¡
y1 Y2

T
�

 
� bT

c D

!
¡

 
'� 'bT

f�+F2c fbT +F2D

! 
 gT

0 G2
T

!
=

 
x1
T

X2

!¡
y1 Y2

T
�

 
� bT

c D

!
¡

 
'� '�gT + 'bTG2

T

f�+F2c f�gT +F2TcgT + fbTG2
T +F2DG2

T

!
=

 
x1
T

X2

!¡
y1 Y2

T
�

 
�¡ '� bT ¡ '�gT ¡ 'bTG2

T

c¡ f� ¡F2c D¡ f�gT ¡F2TcgT ¡ fbTG2
T ¡F2DG2

T

!
=

 
x1
Ty1 x1

TY2
T

X2 y1 X2Y2
T

!
:
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Therefore, we can recover the first row and column of A from F ;G;X; Y , as usual, via

� = x1
T y1

1¡ '
c = (I ¡F2 )¡1(X2 y1+ f�)
b = (I ¡G2 ')¡1(Y2x1+ g�'):

The cost of this recovery depends on the structure of the two lower triangular matrices F2 and G2.
We will assume that these are no more thanO(n) flops. Note that this is true for the Toeplitz case as
both F2;G2 are then bi-diagonal. But many other structured matrices can be imagined for F and G.

Now we do 1 step of Gaussian elimination assuming �=/ 0. Applying the elementary Gauss trans-
form to the left of the displacement equation for A we obtain: 

1 0
¡c
�

I

! 
� bT

c D

!
¡
 

1 0
¡c
�

I

!�
' 0
f F2

� 
1 0
c

�
I

! 
1 0
¡c
�

I

! 
� bT

c D

! 
 gT

0 G2
T

!
=0@ � bT

0 D¡ cbT

�

1A¡ ' 0
f ¡ c'

�
F2

! 
1 0
c

�
I

!0@ � bT

0 D¡ cbT

�

1A  gT

0 G2
T

!
=

0@ � bT

0 D¡ cbT

�

1A¡ ' 0

f ¡ c'

�
+ F2c

�
F2

!0@ � bT

0 D¡ cbT

�

1A  gT

0 G2
T

!
=

 
� bT

0 S

!
¡

 
' 0

f ¡ c'

�
+ F2c

�
F2

! 
� bT

0 S

! 
 gT

0 G2
T

!
= 

� bT

0 S

!
¡

 
' 0

f ¡ c'

�
+ F2c

�
F2

! 
� �gT + bTG2

T

0 SG2

!
=

 
� bT

0 S

!
¡

0@ '� '�gT + 'bTG2
T

f� ¡ c'+F2 c
�
f ¡ c'

�
+ F2c

�

�
(�gT + bTG2T)+F2SG2

1A ;

and the RHS becomes 
1 0
¡c
�

I

! 
x1
T

X2

!¡
y1 Y2

T
�
=

0@ x1
T

X2¡ cx1
T

�

1A¡ y1 Y2
T
�

=

0@ x1
T y1 x1

TY2
T�

X2¡ cx1
T

�

�
y1

�
X2¡ cx1

T

�

�
Y2
T

1A:
Note that the (2; 1) entry implies that

¡(f� ¡ c'+F2 c)=
�
X2¡

cx1
T

�

�
y1:

So a displacement equation for the Schur complement S=D¡ cbT

�
can be obtained as

S ¡F2SG2
T =

�
X2¡

cx1
T

�

�
Y2
T +

�
f ¡ c'

�
+ F2c

�

�
(�gT + bTG2

T)

=
�
X2¡

cx1
T

�

�
Y2
T ¡ 1

�

�
X2¡

cx1
T

�

�
y1(�gT + bTG2

T)

=
�
X2¡

cx1
T

�

��
Y2
T ¡ 1

�
y1(�gT + bTG2

T)
�
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which has the same rank as the displacement of A, provided =/ 0.

If =0 then from equation 12.2 we also have that�
X2¡

cx1
T

�

�
y1=0;

which implies that

X2¡
cx1

T

�
;

is rank deficient and hence the rank of�
X2¡

cx1
T

�

�
Y2
T +

�
f ¡ c'

�
+ F2c

�

�
(�gT + bTG2T);

is no more than the displacement rank of A!

So in every case the displacement rank of S is no more than the displacement rank of A. Since each
step of this implicit Gaussian elimination on A takes O(n) flops, the entire LU factorization of A
can be computed in O(n2) algorithms. This is referred to as Schur's algorithm and is an effective
way of reducing the cost of Gaussian elimination from O(n3) flops to O(n2) flops for matrices with
an efficient displacement equation. By this we mean that F ;G must be lower triangular and cheap
to multiply and do forward substitution on (say O(n) flops), and the correspoding displacement
rank must be small.

Note that this is indeed true for Toeplitz and Hankel matrices, but there are significantly more
matrices for which this is true.

The Schur algorithm as stated is not numerically stable. However, due to lack of time, we ignore
those issues here, and just point out that they will be eventually resolved by another algorithm in
many cases.

12.3 Examples

We now present other (than Toeplitz and Hankel) examples of small displacement rank. Consider:0BB@ X1
0 X1

1 X1
2 � � �

X2
0 X2

1 X2
2 : : :

��� ��� ���

1CCA¡Diag[(Xi)i=1]

0BB@ X1
0 X1

1 X1
2 � � �

X2
0 X2

1 X2
2 : : :

��� ��� ���

1CCAZ"=
0BB@ X1

0 0 � � �
X2
0 0 � � �
��� ���

1CCA;
which has rank p when Xi2Rp�p and Z" is block shift-up matrix. If Xi is 1� 1 then we get the
standard Vandermonde matrix.

Consider a family of matrices Ai;j that satisfy a family of Sylvester-type equations:

Ai;j¡FiAi;jGj=XiYj
T ;

where we assume that the above linear operators are all non-singular. Then

A¡Diag[(Fi)i]ADiag[(Gj)j] =XY T

has small displacement rank. If Ai;j 2R1�1, then the family is referred to as generalized Pick
matrices:

Ai;j=
Xi;:Yj;:

T

1¡FiGj
;
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and are closely related to generalized Cauchy matrices which arise from looking at the related
displacement operator

FA¡AG=XY T :

From a theoretical perspective there is not much difference between these 2 formulations and one
can look at the even more general formulation

L[Z] =AZBT +CZDT =XY T :

However this just makes the formulas unnecessarily complicated at this stage.

Generalized Pick (Cauchy) matrices allow (row and column) pivoting during the Schur algorithm,
which allows these algorithms to be effectively numerically stable. This is an important consider-
ation in practice.

The generalized Pick (Cauchy) matrices have one other important property. Certain of their sub-
matrices have low numerical rank, which is not exploited by the Schur algorithm. This observation
will eventually lead to fast O(n log22n) approximate solvers for Toeplitz type matrices that are also
numerically stable.

There are also other ways to get low displacement ranks in practice. Note that 
A¡1 GT

F A

!
=
�

I 0
FA I

� 
A¡1 GT

0 A¡FAGT

!

=

 
I GTA¡1

0 I

! 
A¡1¡GTA¡1F 0

F A

!
:

The last matrix on both equations must have the same rank, which proves that A¡1 has the same
displacement rank as A.

If GTF ¡ I is low rank then one can show that the product of 2 low displacement rank matrices
for this displacement operator will also have low rank (but larger than the individual displacement
ranks). So for example the product of 2 Toeplitz matrices has low displacement rank even though
they are not Toeplitz.

In general there are lots of matrices with good low displacement rank structure which are hard to
identify directly. For example if both F and G are lower triangular Toeplitz matrices then clearly
we have an associated fast Schur algorithm. However there seems to be no simple characterization
of the explicit structure of the matrix itself.

There is an important class of examples associated to Toeplitz structures which cannot be handled
currently by displacement rank approach. Define the Kronecker product of two matrices:

A
B=

0BB@ A1;1B A1;2B : : :

A2;1B A2;2B : : :

��� ���

1CCA:
Then if T1 and T2 are 2 Toeplitz matrices, T1
T2 is an example of a doubly Toeplitz matrix; that is
a block Toeplitz matrix where each block is also Toeplitz. In the above case the simple tensor struc-
ture gives access to a simple fast direct solver. However for more general doubly Toeplitz matrices
no good displacement structure is known. Similarly one can look at triply Toeplitz matrices and
even less is known about them. These higher order Toeplitz matrices arise in non 1D signal
processing problems and form a huge open problem. Some success has been obtained on this class
of problems by first converting Toeplitz structure to Pick (Cauchy) structure and exploiting the
numerical low-rank in their sub-matrices. Toeplitz matrices can be converted to Pick (Cauchy) like
matrices by means of the FFT (and other fast trigonometric transforms).
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13 Low-rank structures

Observe that if T =Toep[t] then

T ¡ZTZH=XY H ;

is of rank 4. We already know that

Z[n] =F [n] �[n]FH[n]:

Therefore

FHTF ¡� (FHTF ) �H=(FHX) (FHY )H=ABH

Note that this displacement operator is not invertible, but the off-diagonal entries can be computed
readily from the RHS:

(FHTF )i;j=
Ai;:Bj;:

H

1¡�i �̂j
;

as

�i�j=!n
i¡j=/ 1

if 06 i=/ j <n. The diagonal entries are well-defined but have to be computed separately. Note that

(FH[n]TF [n])i;i =
X
p;q=0

n¡1

!n
¡ipTp;q!n

qi

=
X
p;q=0

n¡1

!n
¡i(p¡q)

tp¡q

= n!n
0i t0+(n¡ 1)!n¡it1+(n¡ 2)!n¡2it2+ � � �+

+(n¡ 1)!ni t¡1+(n¡ 2)!n2it¡2+ � � �+

We see that all of these numbers can be computed at the cost of 2 FFT's plus O(n) flops.

In summary we can rapidly convert a Toeplitz matrix to a Pick-type matrix.

Other examples that we want to keep in mind arise from potential theory problems. Let xi2R3

denote the position of n points of mass mi. Then the gravitational potential at y 2R3 is given by

p(y)=
X
i=1

n
mi

kxi¡ yk
:

Given n points yi2R3 can we rapidly compute p(yi)? Given p(yi) can we rapidly find mi? Note
that the above equations can be represented as0BBBBBB@

1

ky1¡x1k
1

ky1¡x2k
� � �

1

ky2¡x1k
1

ky2¡x2k
� � �

��� ���

1CCCCCCA
0BB@ m1

m2

���

1CCA=
0BB@ p(y1)
p(y2)
���

1CCA:

What is a simple, but useful, approximate structure in these types of matrices is that large sub-
matrices can have small numerical rank. For example in the above case it is easy to check that if

min
i;j
kxi¡ yjk�max

i;j
(kxik+ kyjk);
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then the matrix will have small numerical rank and a low-rank expansion can be computed using
classical multi-pole expansions.

13.1 Fast multiplication leads to fast inversion

Low-rank matrices are pleasantly simple to work with. Consider for example computing Ax where
A=Diag[d] +u!vT .

Note that we can proceed as follows:

g = vTx

h = !g

bi=(Ax)i = dixi+uih

and compute b=Ax in O(n) flops. We can also rapidly compute x given b by using the above
equations. First we re-write the above equations in sparse matrix form:

0BB@ 1 0 ¡vT 0
¡! 1 0 0
0 ¡u ¡Diag[d] I

1CCA
0BBBBBB@

g
h
x
b

1CCCCCCA=
0@ 0

0
0

1A:
So fast multiplication requires us to solve the above equations for g; h; b:0@ 1 0 0

¡! 1 0
0 ¡u I

1A0@ g
h
b

1A=
0BB@ vTx

0
Diag[d]x

1CCA:
We see that the above equations are sparse lower triangular and we can do forward substitution
in O(n) flops and recover the same algorithm as before. However if we want to solve Ax= b for x
instead, then we can re-arrange the sparse system to solve for g; h; x instead:0BB@ 1 0 ¡vT

¡! 1 0
0 u Diag[d]

1CCA
0@ g
h
x

1A=
0@ 0

0
b

1A:
Note the system is not triangular any more, and if we do block Gaussian elimination we will return
to the original system of equations:0BB@ 1 0 ¡vT

¡! 1 0
0 u Diag[d]

1CCA =

0@ 1 0 0
¡! 1 0
0 0 I

1A
0BB@ 1 0 ¡vT

0 1 ¡!vT
0 u Diag[d]

1CCA
=

0@ 1 0 0
¡! 1 0
0 u I

1A
0BB@ 1 0 ¡vT

0 1 ¡!vT

0 0 Diag[d] +u!vT

1CCA:
So we gain nothing from this approach. However remember that sparse Gaussian elimination is
sensitive to the ordering of the rows and columns, so let's try a different order. Note that in the
current order the variables will be produced in the sequence x; h; g. Let's try the order h; g; x
instead, and also exchange the first and third equations:0BB@ Diag[d] u 0

0 1 ¡!
¡vT 0 1

1CCA
0@ x
h
g

1A=
0@ b

0
0

1A:
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We now repeat our block Gaussian elimination: 0BB@ Diag[d] u 0
0 1 ¡!
¡vT 0 1

1CCA =

0BB@ I 0 0
0 1 0

¡vTDiag¡1[d] 0 1

1CCA
0BB@ Diag[d] u 0

0 1 ¡!
0 vT Diag¡1[d]u 1

1CCA =

0BB@ I 0 0
0 1 0

¡vTDiag¡1[d] vT Diag¡1[d]u 1

1CCA
0BB@ Diag[d] u 0

0 1 ¡!
0 0 1+!vT Diag¡1[d]u

1CCA :

Note that this time we compute the LU factorization in O(n) flops as we only have O(1) fill-in.
Furthermore we can now compute h; g; x in O(n) flops too.

If we push through and do the forward substitution we get0BB@ I 0 0
0 1 0

¡vT Diag¡1[d] vT Diag¡1[d]u 1

1CCA
0BB@ b

0
vT Diag¡1[d] b

1CCA =

0@ b
0
0

1A
and then follow up with back substitution to get

0BB@ Diag[d] u 0
0 1 ¡!
0 0 1+!vT Diag¡1[d]u

1CCA
0BBBBBBBBBBBB@

Diag¡1[d]
�
b¡ u!vT Diag¡1[d] b

1+!vT Diag¡1[d]u

�
!vT Diag¡1[d] b

1+!vT Diag¡1[d]u

vT Diag¡1[d] b
1+!vT Diag¡1[d]u

1CCCCCCCCCCCCA =

0BB@ b
0

vT Diag¡1[d] b

1CCA:

From this we get famous Sherman-Morrison-Woodbury formula

(Diag[d] +u!vT)¡1=Diag¡1[d]¡ Diag¡1[d]u!vT Diag¡1[d]
1+!vT Diag¡1[d]u

:

Inspite of these formulas notes that the fast solver only required us to form the �lifted� sparse
matrix in the right order and then just depend on sparse Gaussian elimination (for which there
exist many highly developed codes).

This the main way in which fast direct solvers are currently implemented today and the core ideas
can be traced to two sources. One is the body of work by Dewilde and van der Veen, and the other
is the thesis of my student Tim Pals. We will follow this pattern in this class.

13.2 FMM

Above we looked at a fairly simple low-rank structure and observed that it was fairly trivial to
derive fast algorithms provided one looked at the problem the right way. This approach can be
extended now to more complex low-rank structures. The full complexity is captured in what I
have habitually referred to as the Fast Multipole Method (FMM) structure, as this was technically
well-known to Rokhlin and his group of collaborators early on, even though they did not seem to
emphasize the algebraic aspects, being more concerned initally about analytic issues. The algebraic
structures were most clearly realized and exploited in the afore mentioned work of Dewilde and
van der Veen in the context of time varying systems theory. However it is unknown how much
the latter work can be generalized to the full class of FMM matrices and remains one of the most
important open problems in the field.
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14 SSS

The FMM structure is concerned with off-diagonal blocks that have low-rank, so we first look at
some of their simpler properties.

14.1 Basic observations

First note that such low-rank is preserved under addition:

 
� UV T

� �

!
+

 
� PQT

� �

!
=

0BB@ � ( U P )

 
V T

QT

!
� �

1CCA:
Next note that it is also preserved under multiplication:

 
A UV T

� �

! 
� PQT

� B

!
=

0BB@ � ( U AP )

 
V TB

QT

!
� �

1CCA:
It is also preserved under LU factorization: 

A1 UV T

PQT A2

!
=

 
I 0

PQTA1
¡1 I

! 
A1 UV T

0 A2¡PQTA1
¡1UV T

!
:

And finally it is preserved under inversion: 
A1 UV T

PQT A2

!¡1
=

 
A1
¡1 ¡A1¡1UV TS¡1

0 S¡1

! 
I 0

¡PQTA1
¡1 I

!

=

 
� ¡A1¡1UV TS¡1

¡S¡1PQTA1
¡1 �

!
:

In fact neither LU factorization or inversion cause an increase in off-diaogonal ranks (called Schur
rank from now on).

The next key observation is that for some matrices the ranks of all off-diagonal blocks can be small.
So if you look at the block partitioning

A=

0@ A11 A12 A13
A21 A22 A23

A31 A32 A33

1A;
then both upper off-diagonal blocks

( A12 A13 ),
�
A13

A23

�
;

might have low rank. How do we exploit this type of property in constructing fast algorithms?

First some examples. If we look at a banded matrix of bandwidth k,

Ai;j=0; ji¡ j j>k;

22



then it is easy to check that all off-diagonal blocks have rank at most k. Now it follows from
what we just proved that the inverse of such a matrix, though not banded, also has off-diagonal
blocks of rank at most k. Furthermore if A and B are two banded matrices of bandwidth k, then
(A¡1+B¡1)¡1 also has Schur rank at most 2k.

14.2 The representation

To exploit this property well we must have a matrix representation that is compact and amenable
to fast matrix algorithms. The work Eidelman, Gohberg, Dewilde and van der Veen, made such rep-
resentations available. We will refer to this as Sequentially Semi-Separable (SSS) representations.

An SSS representation of a matrix A is a set of sequences of matrices (D;U ; V ;W ;P ; Q;R) such
that

A=

0BBBBBBBBBBBB@
D1 U1V2

T U1W2V3
T U1W2W3V4

T � � �
P2Q1

T D2 U2V3
T U2W3V4

T � � �
P3R2Q1

T P3Q2
T D3 U3V4

T � � �
P4R3R2Q1

T P4R3Q2
T P4Q3

T D4 � � �
��� ��� ��� ��� �� �

1CCCCCCCCCCCCA:

Note that the general formula is:

Ai;i = Di

Ai;j = UiWi+1� � �Wj¡1Vj
T ; i < j;

Ai;j = PiRi¡1 � � �Rj+1QjT ; i > j:

It is important to keep in mind that the matrices involved may not be square matrices. They point
of tihs representation is that it immediately provides a low rank factorization of each off-diagonal
block that touches the diagonal:

¡
U1V2

T U1W2V3
T U1W2W3V4

T � � �
�
= U1

¡
V2
T W2V3

T W2W3V4
T � � �

� 
U1W2V3

T U1W2W3V4
T � � �

U2V3
T U2W3V4

T � � �

!
=
�
U1W1

U2

�¡
V3
T W3V4

T � � �
�

0BB@ U1W2W3V4
T � � �

U2W3V4
T � � �

U3V4
T � � �

1CCA =

0@ U1W1W2

U2W1

U3

1A¡ V4T � � �
�
:

We will refer to the off-diagonal blocks that appear on the LHS as Hankel blocks to denote they
are special off-diagonal blocks that touch both the diagonal and corner of the parent matrix.

14.3 Construction

While it is clear that these representations provide a rank factorization of each Hankel block, it is
not clear if they can all be the minimal low rank factorization simultaneously. Dewilde and van der
Veen showed that this is indeed the case and provided an algorithm to construct the representation
in O(n2) flops assuming the underlying matrix A is not special. If the matrix A is special, for
example a generalized Pick (Cauchy) matrix, then FMM techniques (Greengard & Rokhlin, etc.)
can be used to construct the SSS representation in O(n log22n) flops. Here we just describe the
more general algorithm first.
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First compute the low-rank factorization (say using an SVD):

( A1;2 A1;3 � � � )=U1H1
T =U1

¡
H1;2
T H1;3

T � � �
�
:

Then consider the next Hankel block:

 
A1;3 A1;4 � � �
A2;3 A2;4 � � �

!
=
�
U1

I

� 
H1;3
T H1;4

T � � �
A2;3 A2;4 � � �

!

=
�
U1

I

��
W2

U2

�
H2
T

=
�
U1W2

U2

�
H2
T

=
�
U1W2

U2

�¡
H2;3
T H2;4

T � � �
�
:

If we ensure that we low rank factorizations with the first factor having orthonormal columns:

U1
TU1= I ;

�
W2

U2

�
T
�
W2

U2

�
= I ;

then it follows that left factor �
U1W2

U2

�

also has orthonormal columns. If this is true always we say that the SSS representation is in left
proper form. The rest of the construction process should be clear now for producing all the Ui's
and Wi's.

Furthermore if

rank

0BBBBBB@
A1;i+1 A1;i+2 � � �
��� ���

Ai¡1;i+1 Ai¡1;i+2
Ai;i+1 Ai;i+2 � � �

1CCCCCCA=mi

then it follows that Wi and Ui have mi columns. As to the Vi's note that

Vi+1
T =Hi;i+1

T :

Therefore it also follows that Vi+1 has exactly mi columns.

A similar procedure (or work on AT) can be used to construct P ; Q;R. We will use ni to denote
the ranks of Hankel blocks with top right corner block Ai¡1;i.

The construction procedure shows several things:

� Every matrix A has an exact SSS representation.
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� If there are n block rows then the cost of constructing an SSS representation is O(n2m2)
flops, where m=max (mi).

� The SSS representation compresses each Hankel block optimally.

The SSS representation enjoys further nice properties:

� It allows fast matrix vector multiplies, Ax.

� It allows fast solution of Ax= b.

� It allows fast LU , QR and ULV factorizations of A.

� If both A and B are in SSS form:

� it allows fast addition A+B, and

� fast multiplication AB.

So the SSS form can be viewed as an ideal matrix representation for fast algorithms, provided of
course the matrices have low Hankel ranks. (For further information on SSS representations see
the book by Dewilde & van der Veen.)

Here we just cover fast matrix-vector multiply and fast solvers, as they are tied to each other.

14.4 Fast matrix-vector multiplication

Given x and A in SSS form we want to rapidly compute b = Ax. Looking at the i-th block
component of b we get:

bi =
X
j=1

i¡1

Ai;j xj+Ai;ixi+
X
j=i+1

n

Ai;jxj

=
X
j=1

i¡1

PiRi¡1� � �Rj+1Qj
T xj+Dixi+

X
j=i+1

n

UiWi+1� � �Wj¡1Vj
Txj

= Pi
X
j=1

i¡1

Ri¡1� � �Rj+1Qj
T xj||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

hi¡1

+Dixi+Ui
X
j=i+1

n

Wi+1� � �Wj¡1Vj
T xj|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

gi+1

= Pihi¡1+Di xi+Ui gi+1

= Pi

0BBBB@Ri¡1
0BBBB@Xj=1

i¡2

Ri¡2� � �Rj+1Qj
T xj||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

hi¡2

1CCCCA+Qi¡1
T xi¡1

1CCCCA
+ Di xi

+ Ui

0BBBB@Vi+1T xi+1+Wi+1

0BBBB@
X
j=i+2

n

Wi+2� � �Wj¡1Vj
Txj||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

gi+2

1CCCCA
1CCCCA

= Pi(Ri¡1hi¡2+Qi¡1
T xi¡1)+Dixi+Ui(Vi+1T xi+1+Wi+1 gi+2):

This prompts use to define the following recursive procedure:

gn = Vn
T xn

gi = Vi
T xi+Wi gi+1

h1 = Q1
Tx1

hi = Qi
Txi+Ri hi¡1

bi = Pihi¡1+Dixi+Ui gi+1:
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A simple count shows that the cost is O(nm2) flops, where m=max (mi; ni). If we want to use
the matrix size N rather than the block size n, then this estimate is O(Nm) flops.

14.5 Sparse representation and fast solver
We can now re-express the fast multiplication recursions in sparse �diagonal� form. Define the
matrices

D = Diag[Di]
V = Diag[Vi]
U = Diag[Ui]
W = Diag[Wi]
P = Diag[Pi]
Q = Diag[Qi]
R = Diag[Ri]

g = Vec[gi] =

0BB@ g1
g2
���

1CCA
h = Vec[hi]
x = Vec[xi]
b = Vec[bi]:

We will assume that Z# denotes a suitable block down shift matrix and Z" a suitable block up shift
matrix. Then the fast multiplication recursions can be expressed as:

0BB@ I ¡WZ" 0 ¡V T 0
0 I ¡RZ# ¡QT 0

UZ" PZ# D ¡I

1CCA
0BBBBBB@

g
h
x
b

1CCCCCCA=
0@ 0

0
0

1A;
which is a very sparse matrix. We can express fast matrix-vector multiply as the triangular equa-
tion: 0BB@ I ¡WZ" 0 0

0 I ¡RZ# 0
¡UZ" ¡PZ# I

1CCA
0@ g
h
b

1A=
0BB@ V Tx

QTx
¡Dx

1CCA;
so fast matrix-vector is just sparse forward substitution. We make a useful observation. Note that

(I ¡WZ")¡1 =

0BBBBBBBBBB@
I ¡W2

I ¡W3

�� � �� �
I ¡Wn¡1

I

1CCCCCCCCCCA
¡1

=

0BBBBBB@
I W2 W2W3 W2W3W4 � � �

I W3 W3W4 � � �
I W4 � � �

�� � �� �

1CCCCCCA:
Next for solving Ax= b we can re-arrange the system suitably and first obtain:0BB@ I ¡WZ" 0 ¡V T

0 I ¡RZ# ¡QT

UZ" PZ# D

1CCA
0@ g
h
x

1A=
0@ 0

0
b

1A:
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However, we see the dreaded bad ordering of the arrowhead matrix and sure enough doing sparse
Gaussian elimination leads to fill-in, but yet yields useful information:

A=D+UZ"(I ¡WZ")¡1V T +PZ#(I ¡RZ#)¡1QT :

This is called the diagonal representation of A, however it does not yield a fast algorithm for the
solution x. For that we must find an ordering of the rows and columns that minimizes fill-in. A
good ordering can be obtained as follows:

yi =

0@ gi
hi
xi

1A
0@ 0 0 0

0 ¡Ri 0
0 Pi 0

1Ayi¡1+
0BB@ I 0 ¡ViT

0 I ¡Qi
T

0 0 Di

1CCAyi+
0@ ¡Wi 0 0

0 0 0
Ui 0 0

1Ayi+1 =

0@ 0
0
bi

1A:
This is a banded system of equations and can be solved in O(nm3) flops.

While convenient and highly practical, this approach is not that satisfactory. For example, it does
not readily provide the SSS representation of the LU factors of A, though some such form must
have been computed. Fortunately there do exists direct fast algorithms for all of these operations,
but we postpone them for now.

15 HSS

15.1 Introduction

The SSS representation is not as efficient in practice when there are Hankel blocks with large
ranks. In particular for potential theory problems in 2 or 3 dimensions, and doubly Pick (Cauchy)
matrices, SSS does not seem to capture all the structure of the matrix, so other representations
have been investigated. Very likely the most appropriate one is the FMM one, but unfortunately
a good ordering for the corresponding sparse matrix is not known, and probably does not exist.
In this context I with my collaborators proposed the HSS representation, which is something like
a 0.5D FMM representation. However it comes with the advantage that a fast solver is known,
and in fact it is very much like SSS, in that a full suite of fast algorithms for various operations
are available. We point out that it was known even earlier in the thesis of Paige Starr (Rokhlin's
student) that the HSS like matrices have fast direct solvers. However the proposed algorithm was
numerically stable and Ming Gu was the first to propose the fast ULV solvers as a potential avenue
of attack for these problems.

Even with all this progress the question of fast direct solvers for general FMM matrices remains
wide open.

15.2 Basic facts

We start with some facts about low-rank off-diagonal blocks of 3� 3 partitions. Since0@ 0 I 0
I 0 0
0 0 I

1A0@ A11 A12 A13
A21 A22 A23

A31 A32 A33

1A0@ 0 I 0
I 0 0
0 0 I

1A=
0@ A22 A21 A23
A12 A11 A13

A32 A31 A33

1A
we see that the row-Hankel block

( A21 A23 )
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is a true Hankel block after block permutations. Similarly for the column-Hankel block�
A12
A32

�
:

Therefore it follows that any low-rank in these blocks will also be preserved across matrix opera-
tions. We leave the detailed verification of this claim to the reader.

Just as SSS representations were designed to capture precisely the low-rank of all Hankel blocks,
HSS representations are designed to capture the low rank of all row- and column-Hankel blocks.
However, now because of the interleaving of the permutations we need to take care of some book
keeping, which was simple enough in the SSS case that we didn't call it out separately.

A good way is to categorize the blocks recursively. We start with a 2� 2 partition:

A0; = A

A0; =
n1;0 n1;1

n1;0 A1;0;0 A1;0;1
n1;1 A1;1;0 A1;1;1

;

where the index before the semi-colon reminds us how many times we have recursively partitioned
A, and the size of each partition, n1;0 and n1;1, are fixed based on other considerations. We then
proceed to split each block further:

Al¡1;i;j=
nl;2i nl;2i+1

nl;2i Al;2i;2i Al;2i;2i+1
nl;2i+1 Al;2i+1;2i Al;2i+1;2i+1

:

It is easier to understand the naming scheme by looking the full 2nd level partition

A=

n2;0 n2;1 n2;2 n2;3
n2;0 A2;0;0 A2;0;1 A2;0;2 A2;0;3
n2;1 A2;1;0 A2;1;1 A2;1;2 A2;1;3
n2;2 A2;2;0 A2;2;1 A2;2;2 A2;2;3
n2;3 A2;3;0 A2;3;1 A2;3;2 A2;3;3

;

where the partitions from A1;i;j are shown in different colors. It is necessarily true that

nl;i=nl+1;2i+nl+1;2i+1:

It helps to visualize these relationships using a binary partition tree:

Note that A1;0;1 and A1;1;0 are both Hankel blocks and it makes sense to posit that they have low
rank expansions

A1;i;j=U1;iB1;i;jV1;jT ;

where, for stability purposes we will assume that both U� and V� have orthonormal columns. Now
consider the sub-matrix A2;0;1. It is a sub-matrix of the row-Hankel block

( A2;0;1 A2;0;2 A2;0;3 )
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and hence must have low rank, but it overlaps with A1;0;1. Similarly A2;0;1 is a sub-matrix of the
column-Hankel block 0BB@ A2;0;1

A2;2;1
A2;3;1

1CCA
and hence must have low rank, but it overlaps with A1;1;0: There are other such constraints at
this level. So we need a representation that satisfies all these constraints optimally. The choice we
make is that:

A2;i;j = U2;iB2;i;jV2;j
T

U1;i =

 
U2;2iR2;2i

U2;2i+1R2;2i+1

!

V1;i =

 
V2;2iW2;2i

V2;2i+1W2;2i+1

!
:

It is conventional in HSS representations to only choose a minimal subset of these parameters to
actually store and represent the matrix. The choice is dictated by a binary tree that the user can
choose typically based on some other considerations. Here we will simply choose a simple uniform
binary tree. For example the column-Hankel block 

A2;0;1 A2;0;2
A2;3;1 A2;3;2

!

will not be given an explicit representation. Instead they will obtain their representations from
other row- and column-Hankel blocks. This choice is indicated by the coloring pattern below:

:

Singly colored blocks will have a stored representation of the form

Ul;iBl;i;jVl;j
T

where l depends on the smallest level at which the block can be first isolated. Representations
of sub-blocks of singly colored blocks will not be stored or even computed as there is no need for
them. Here is another visualization of what we mean:
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Even these many parameters is too much. In particular note that because of Rl;i;j andWl;i;j, we do
not need to store Uk;i and Vk;i except at the highest partition levels (when the blocks are smallest
in size).

So, for example, if l= 2 is the highest level partition, then the matrix representation will be as
follows:0BBBBBBBB@

D2;0 U2;0B2;0;1V2;1
T U2;0R2;0B1;0;1W2;2

T V2;2
T U2;0R2;0B1;0;1W2;3

T V2;3
T

U2;1B2;1;0V2;0
T D2;1 U2;1R2;1B1;0;1W2;2

T V2;2
T U2;0R2;0B1;0;1W2;3

T V2;3
T

U2;2R2;2B1;1;0W2;0
T V2;0

T U2;2R2;2B1;1;0W2;1
T V2;1

T D2;2 U2;2B2;2;3 V2;3
T

U2;3R2;3B1;1;0W2;0
T V2;0

T U2;3R2;3B1;1;0W2;1
T V2;1

T U2;3B2;3;2V2;2
T D2;3

1CCCCCCCCA:

It is worthwhile to peruse this example to get a feel for what part of the representation is actually
stored, and how precisely the different blocks are reconstructed. Just like the SSS case simple low-
rank decomposition of the smallest blocks are not very useful.

The main goal of the HSS representation is to constuct fast direct solvers. If fast matrix-vector
multiplication is desired then the full FMM representation will be a better choice. Other repre-
sentations have been proposed, but they are typically sub-optimal for both operations, and we do
not discuss them here.

15.3 Construction

Just like in the SSS case it is useful to start with the construction algorithm. We start with the
construction of the Uk;i's and their associated Rk;i's. The same algorithm applied to the transpose
will then yield the corresponding set of Vk;i's and Wk;i's. Once these are available the Bk;i;j's can
then be computed.

We assume that the desired binary partition tree is already given (presumably chosen so as to
ensure good low-rank properties for all associated row- and column-Hankel blocks).

We start at the deepest level l=L and look at each row-Hankel block at that level:

Hl;i=
¡
Al;i;0 Al;i;1 � � �Al;i;i¡1 Al;i;i+1 Al;i;i+2 � � � Al;i;2l¡1

�
:

We compute a low-rank left orthogonal factorization:

Hl;i=Ul;i
¡
Gl;i;0 � � �Gl;i;i¡1 Gl;i;i+1 � � � Gl;i;2l¡1

�
:

We now move one level down and consider the row-Hankel blocks:

Hl¡1;i =

 
Al;2i;0 � � � Al;2i;2i¡1 Al;2i;2i+2 � � � Al;2i;2l¡1
Al;2i+1;0 � � � Al;2i+1;2i¡1 Al;2i;2i+2 � � � Al;2i;2l¡1

!

=

 
Ul;2i

Ul;2i+1

! 
Gl;2i;0 � � � Gl;2i;2i¡1 Gl;2i;2i+2 � � � Gl;2i;2l¡1
Gl;2i+1;0 � � � Gl;2i+1;2i¡1 Gl;2i;2i+2 � � � Gl;2i;2l¡1

!

=

 
Ul;2i

Ul;2i+1

! 
Rl;2i
Rl;2i+1

!¡
Gl¡1;i;0 � � �Gl¡1;i;i¡1 Gl¡1;i;i+1 � � � Gl¡1;i;2l¡1¡1

�
where the last factorization is again assumed to produce orthonormal columns for the matrix

 
Rl;2i
Rl;2i+1

!
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to ensure numerical stability of the representation. Now the recursion proceeds up the partition
tree in an obvious way. Note that at each stage we attain optimal compression of each row-Hankel
block as promised. It is important pay attention to the fat matrices in the above recursions as we
are carefully dropping diagonal blocks as we work our way up the partition tree.

We use a similar recursion on the column-Hankel blocks to compute the Vk;i's and the Wk;i's.

Now we turn our attention to the Bk;i;j's. The most obvious approach is to re-use the compressed
row-Hankel (say) blocks:

Bl;2i;2i+1 = Ul;2i
T Al;2i;2i+1Vl;2i+1;

Bl;2i+1;2i = Ul;2i+1
T Al;2i+1;2iVl;2i:

At the highest level l=L this is an efficient formula. At a lower level:

Bl¡1:i;j = Ul¡1;i
T Al¡1;i;jVl¡1;j

=
¡
Rl;2i
T Ul;2i

T Rl;2i+1
T Ul;2i+1

T
� Al;2i;2j Al;2i;2j+1

Al;2i+1;2j Al;2i+1;2j+1

! 
Vl;2jWl;2j

Vl;2j+1Wl;2j+1

!
= Rl;2i

T Bl;2i;2jWl;2j+Rl;2i+1T Bl;2i+1;2jWl;2j+Rl;2iT Bl;2i;2j+1Wl;2j+1+

+Rl;2i+1T Bl;2i+1;2j+1Wl;2j+1:

So this leads to a recursive construction for each local block that needs Bk;i;j.

It is easy to check that the total cost of this construction is O( n2 k) where k is the maximum
Hankel (row and column) rank encountered.

We again note that if the matrix entries are special, for example Ai;j= kxi¡xjk
p

, then FMM
techniques can be used to compute the HSS representation at a cost determined by the dimension
of the vector space containing the points xi. We refer to the copious FMM literature for these issues.

15.4 Fast matrix-vector multiply

Suppose we have the HSS representation of A, given the column matrix x, how quickly can we
compute b=Ax? The spirit of the algorithm is similar to the SSS case.

The key is to look at the inevitable product

A1;0;0 x1;0+A1;0;1x1;1= b1;0

where the partitions xl;i and bl;i are conformal with nl;i. We see that this product involves:

A1;0;0x1;0+U1;0B1;0;1V1;1T x1;1|||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
g1;1

= b1;0;

but we do not have V1;1. So we must recurse down:

g1;1 = V1;1
T x1;1

=
¡
W2;2

T V2;2
T W2;3

T V2;3
T
� x2;2

x2;3

!
= W2;2

T g2;2+W2;3
T x2;3:

We see now that these quantities are needed and prompts us to write down the general bottom-
up recursions on the partition tree:

gL;i = VL;i
T xL;i

gl¡1;i = Wl;2i
T gl;2i+Wl;2i+1

T gl;2i+1:

31



At the end of this recursion we basically have all the Vl;iT xl;i that we could possibly need. Now we
go back to the rest of the terms for b1;0:

A1;0;0x1;0+U1;0B1;0;1 g1;1||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
h1;0

= b1;0:

We do not have U1;0, so we must recurse:

b1;0 = A1;0;0x1;0+U1;0h1;0 
b2;0
b2;1

!
=

 
A2;0;0 U2;0B2;0;1V2;1

T

U2;1B2;1;0V2;0
T A2;1;1

! 
x2;0
x2;1

!
+

 
U2;0R2;0
U2;1R2;1

!
h1;0

b2;0 = A2;0;0x2;0+U2;0
 
B2;0;1 g2;1+R2;0 h1;0|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

h2;0

!
b2;1 = A2;1;1x2;1+U2;1

 
B2;1;0 g2;0+R2;1 h1;0|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

h2;1

!
:

So examining these formulas we see that we must use the general recursions:

h0;0 = []
hl;2i = Bl;2i;2i+1 gl;2i+1+Rl;2ihl¡1;i

hl;2i+1 = Bl;2i+1;2i gl;2i+Rl;2i+1hl¡1;i:

Finally the above expressions also give us:

bL;i=AL;i;ixL;i+UL;ihL;i:

It is easy to check that the cost of this algorithm is O(Nk) flops, where k is the maximum Hankel
rank.

15.5 Fast solver

We will again take the path of representing the fast multiplication algorithm as a sparse system
of equations. We will organize the intermediate variables in a breadth-first manner:

gl =

0BBBBBB@
gl;0
gl;1
���

gl;2l¡1

1CCCCCCA

g =

0BBBBBB@
g0
g1
���
gL

1CCCCCCA:
Similarly for h.

32


	1 Matrix arithmetic
	2 Fast matrix multiplication
	3 Recursive inequalities
	4 Bit peeking
	5 Gaussian elimination
	6 Goals
	7 Fourier
	8 Sparse matrices
	9 Shift-invariant structures
	9.1 Circulant structure
	9.1.1 Eigenstructure of Z[n]
	9.1.2 Circulant and FFT

	9.2 Toeplitz structure
	9.2.1 Fast Toeplitz-vector multiply

	9.3 Triangular Toeplitz matrices
	9.4 Fast solvers

	10 Fast Polynomial Arithmetic
	11 Iterative methods
	12 Displacement structure
	12.1 Sylvester type equations
	12.2 Schur algorithm
	12.3 Examples

	13 Low-rank structures
	13.1 Fast multiplication leads to fast inversion
	13.2 FMM

	14 SSS
	14.1 Basic observations
	14.2 The representation
	14.3 Construction
	14.4 Fast matrix-vector multiplication
	14.5 Sparse representation and fast solver

	15 HSS
	15.1 Introduction
	15.2 Basic facts
	15.3 Construction
	15.4 Fast matrix-vector multiply
	15.5 Fast solver


