
Lecture 2a

March 4, 2022

1 Quick recap

On wednesday, we reflected on some “non-trivial” techniques to accelerate basic linear algebra op-
erations (matrix-matrix multiplication and gaussian eliminatino) of general dense matrices. We saw
that, although these algorithms are asymptotically better, they are not really practical, and there
are limitations to how much we can make real progress here. The field has therefore moved on to
look into matrices of structure, directly driven by applications in science and engineering.

Colloquially, we classified two types of structures, sparse matrices and dense structured matrices.
The development of sparse matrix algorithms can historically be linked with the need to to solve
finite difference equations of ODE’s and PDEs, whereas the kind of dense structured matrices (FMM
and HSS) that we will look into towards the second half of this course, were primarily driven by the
quest to solve integral equations.

2 Focus of this lecture

Before we jump into those kind of matrices, in this lecture, we will first take a glance into some
classical work on dense structured matrices. Classical work on fast algorithms for dense structured
matrices is closely linked with the need to do operations on polynomials. These operations are
subsequently closely tied to applications in electrical engineering and signal processing.

Historically, there has always been a strong interplay between polynomials and linear algebra.
Polynomials pop up everywhere in subject of linear algebra and vice versa as well. We will look at
bunch of examples of these right now, and we will see how a core algorithm: the FFT, plays a key
role in finding fast algorithms for these problems.

3 Polynomial evaluation, interpolation and Vandermonde ma-
trices

The first example is that of polynomial evaluation. Say, p is a polynomial and you would like to
evaluate it at a point x,

p(x) = a0 + a1x + a2x2 + . . . + anxn−1 + anxn

We do this for a bunch of points

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 x1 x21 . . . xn−11 xn1
1 x2 x22 . . . xn−12 xn2
1 x3 x23 . . . xn−13 xn3
...

...
...

. . .
...

...
1 xm x2m . . . xn−1m xnm

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a0
a1
a2
...

an−1
an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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which shows that polynomial evaluates can be reduces to a matrix vector product. Polynomial
interpolation (or least-squares fit of polynomials) on the other hand is the inverse of this problem.
The matrix above is called a Vandermonde matrix. It is dense, but datasparse in the sense that is
fully described in terms of m values. A key structure we observe in this matrix is the shift property

⎛
⎜⎜⎜⎜
⎝

x1
x2

. . .

xn

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 x1 . . . xn−11

1 x2 . . . xn−12

1 x3 . . . xn−13
...

...
. . .

...
1 xm . . . xn−1m

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

x1 x21 . . . xn1
x2 x22 . . . xn2
x3 x23 . . . xn3
...

...
. . .

...
xm x2m . . . xnm

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

x1
x2

. . .

xn

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 x1 . . . xn−11

1 x2 . . . xn−12

1 x3 . . . xn−13
...

...
. . .

...
1 xm . . . xn−1m

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 x1 x21 . . . xn1
1 x2 x22 . . . xn2
1 x3 x23 . . . xn3
...

...
...

. . .
...

1 xm x2m . . . xnm

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 . . . 0
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

4 Root solving, companion matrix

Next consider the problem of finding the roots of a polynomial. If n is de degree of the polynomial, we
have n roots. We can scale the polynomial by an arbitrary non-zero coefficient without changing the
position of the roots. Every set of n roots can be uniquely paired with a monic polynomial of degree
n. In the special case when the roots λ1, λ2, . . . , λn are all distinct, we can verify this statement from
a simple linear algebra reasoning. We must satisfy the equation

−
n−1

∑
k=0

akλ
k
i = λni , i = 1, . . . , n,

or in matrix notation,

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 λ1 λ21 . . . λn−11

1 λ2 λ22 . . . λn−12

1 λ3 λ23 . . . λn−13
...

...
...

. . .
...

1 λm λ2m . . . λn−1m

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

−a0
−a1
−a2
...

−an−1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

λn1
λn2
λn3
...
λnn

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

The Vandermonde matrix is known to have a nonvanishing determinant when the poles are distinct.
Now what if we want to find the map from the coefficients to the roots? Well, if we cleverly mush

together the shift property of vandermonde matrices and our previous expression into single matrix
expression, we get:

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 λ1 λ21 . . . λn−11

1 λ2 λ22 . . . λn−12

1 λ3 λ23 . . . λn−13
...

...
...

. . .
...

1 λm λ2m . . . λn−1m

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 . . . 0 −a0
1 0 . . . 0 −a1
0 1 . . . 0 −a2
...

...
. . .

...
...

0 0 . . . 1 −an−1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛
⎜⎜⎜⎜
⎝

λ1
λ2

. . .

λn

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 λ1 λ21 . . . λn−11

1 λ2 λ22 . . . λn−12

1 λ3 λ23 . . . λn−13
...

...
...

. . .
...

1 λm λ2m . . . λn−1m

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

The above describes a eigenvalue decomposition of the so-called companion matrix

A(a) = A(a0, a1, . . . , an) =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 . . . 0 −a0
1 0 . . . 0 −a1
0 1 . . . 0 −a2
...

...
. . .

...
...

0 0 . . . 1 −an−1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

(1)
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The rows of the vandermonde matrix

V (λ) = V (λ1, . . . , λn) =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 λ1 λ21 . . . λn−11 λn1
1 λ2 λ22 . . . λn−12 λn2
1 λ3 λ23 . . . λn−13 λn3
...

...
...

. . .
...

...
1 λm λ2m . . . λn−1m λnm

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a0
a1
a2
...

an−1
an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

are the left eigenvectors of this Companion matrix, and eigenvalues are the roots of the monic
polynomial of consideration. We can hence find the roots through solving an eigenvalue problem.
There are quite some researchers in the field such as Dario Bini, Raf van de Bril, Marc van Barel,
Luca Gemignani (and Shiv as well), who have all worked on fast eigenvalue solvers for this important
matrix. In this course, we will not have much time to get into the details of what these algorithms.

5 Trignometric polynomials and the DFT matrix

There is a direct link between polynomials and trigonometric functions. Substiting eiθ ∶= 1−θ+ 1
2
θ2−

1
6
θ3 + . . . = cos(θ) + i sin(θ) converts a polynomial into a trigonometric function. The interpolation

problem of trigonometric functions on equispaced points is equivalent to polynomial interpolation
with interpolation points on the roots of identity ω̄n = exp2πiθ/n. Substituting this into the vander-
monde matrix of degree n − 1 gives use

V −1
n =

√
n ⋅ 1√

n

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ω̄0⋅0
n ω̄0⋅1

n ω̄0⋅2
n . . . ω̄

0⋅(n−1)
n

ω̄1⋅0
n ω̄1⋅1

n ω̄1⋅2
n . . . ω̄

1⋅(n−1)
n

ω̄2⋅0
n ω̄2⋅1

n ω̄2⋅2
n . . . ω̄

2⋅(n−1)
n

...
...

...
...

ω̄
(n−1)⋅0
n ω̄

(n−1)⋅1
n ω̄

(n−1)⋅2
n . . . ω̄

(n−1)⋅(n−1)
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

a0
a1
a2
...

an−1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

p(ω̄0
n)

p(ω̄1
n)

p(ω̄2
n)
...

p(ω̄n−1n )

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

The matrix above is unitary and its inverse is the discrete Fourier Transform.

Fn =
1√
n

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ω0⋅0
n ω0⋅1

n ω0⋅2
n . . . ω

0⋅(n−1)
n

ω1⋅0
n ω1⋅1

n ω1⋅2
n . . . ω

1⋅(n−1)
n

ω2⋅0
n ω2⋅1

n ω2⋅2
n . . . ω

2⋅(n−1)
n

...
...

...
...

ω
(n−1)⋅0
n ω

(n−1)⋅1
n ω

(n−1)⋅2
n . . . ω

(n−1)⋅(n−1)
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Evaluation of trigonometric polynomials is associated with the inverse DFT matrix. Interpolation is
associated with the DFT matrix.

6 Cooley-Tuckey’s FFT algorithm

DFT matrix and its inverse has very special structure. Let Πn denote a perfect shuffle permutation
matrix such that the FnPin separates the odd columns the DFT from the even ones. Let n be
divisble by two. We have the following decomposition

FnΠn =
1√
2
[Fn/2 Ωn/2Fn/2
Fn/2 −Ωm/2Fn/2

] = [I Ωm/2
I −Ωm/2

] [Fn/2
Fn/2

]
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where

Ωn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ω2n

ω2
2n

. . .

ωn−12n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Assuming we have n as a power of two, we can formulate a divide and conquer algorithm for the

multiply with
f(n) ≤ 2f(n/2) +Cn

This leads to O (n logn) algorithm. This algorithm depends critically on finding a factorization of
the matrix where each factor is itself sparse (or at least recursively so).

7 FFT as a workhorse for many fast matrix algorithms

Cooley-Tuckey’s algorithm can be used as a hammer to accelerate matrix algorithms. But, we will
see that FFT alone has limitations and can’t solve all problems to a satisfactory level.

• Circulant matrices:

C(c) = C(c0, c1, . . . , cn−1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

c0 cn−1 ⋯ c2 c1
c1 c0 cn−1 c2
... c1 c0

. . .
...

cn−2
. . .

. . . cn−1
cn−1 cn−2 ⋯ c1 c0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Matrix-vector multiplication with circulant desribe circular convolutions

(c⊛ x)i =
n−1

∑
k=0

c(i−k)modnxk.

• Toeplitz matrices:

T (t) = (t−(n−1), t−(n−2), . . . , tn−1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

t0 t−1 t−2 ⋯ ⋯ t−(n−1)

t1 t0 t−1
. . .

...

t2 t1
. . .

. . .
. . .

...
...

. . .
. . .

. . . t−1 t−2
...

. . . t1 t0 t−1
tn−1 ⋯ ⋯ t2 t1 t0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Matrix-vector multiplication with Toeplitz desribe ordinary convolutions

• and Hankel matrices:

H(h) =H(h0, h1, . . . , h2n−2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

h0 h1 h2 . . . . . . hn−1

h1 h2
...

h2
...

... h2n−4

... h2n−4 h2n−3
hn−1 . . . . . . h2n−4 h2n−3 h2n−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Note that H(h)E is Toeplitz, where

E =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
1

. .
.

1
1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

In some applications we deal with H + T , so cannot shove Toeplitz and Hankel into the same
category.

8 Fast matrix-vector multplication

FFT significantly accelerates the matrix-vector multiplication for all three matrices: Circulant,
Toeplitz, Hankel.

8.1 The convolution theorem

The convolution theorem states that all circulant matrices are simultaneously diagonalizable by the
DFT matrix. To see why this is true, let us first look at a 4-by-4 circulant matrix by decomposing
it into a linear combination of “canonical matrices”. We got

⎛
⎜⎜⎜
⎝

c0 c3 c2 c1
c1 c0 c3 c2
c2 c1 c0 c3
c3 c2 c1 c0

⎞
⎟⎟⎟
⎠
= c0

⎛
⎜⎜⎜
⎝

1
1

1
1

⎞
⎟⎟⎟
⎠
+ c1

⎛
⎜⎜⎜
⎝

1
1

1
1

⎞
⎟⎟⎟
⎠
+ c2

⎛
⎜⎜⎜
⎝

1
1

1
1

⎞
⎟⎟⎟
⎠
+ c3

⎛
⎜⎜⎜
⎝

1
1

1
1

⎞
⎟⎟⎟
⎠

We can do further simplifications. It turns out that the matrices we see above are powers of the
matrix

Z4 = c1
⎛
⎜⎜⎜
⎝

1
1

1
1

⎞
⎟⎟⎟
⎠

k

(2)

for k = 0,1,2,3 in that order (also note that Z4
4 = I). Hence, we may write a 4-by-4 circulant matrix

as C(c0, c1, c2, c3) = ∑2
k=0 c0Z

k
4 . For a general n-by-n circulant matrix, we have:

C(c) =
n−1

∑
k=0

ckZ
k
n, (3)

where

Zn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ ⋯ 0 1

1 0
... 0

0 1
. . .

...
...

...
. . .

. . . 0
...

0 ⋯ 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

is the circular shift-down matrix (note that Zn is also circulant). The name renders from the property

that Zn cyclically permutes the entries of a vector under multiplication, i.e., Zn (b1 b2 . . . bn)
⊺ =

(bn b1 . . . bn−1)
⊺

The decomposition (3) is very revealing. It shows that in order to find the

5



eigendecomposition of any circulant, one truly needs to only know the eigendecomposition of Zn =
VnΛnV

−1
n . This follows from the algebraic manipulations

C(c) =
n−1

∑
k=0

ck(VnΛnV
−1
n )k

=
n−1

∑
k=0

VnckΛknV
−1
n

= Vn (
n−1

∑
k=0

ckΛkn)V −1
n .

Furthermore, we can write

n−1

∑
k=0

ckΛkn =
n−1

∑
k=0

ck

⎛
⎜⎜
⎝

λk1
. . .

λkn

⎞
⎟⎟
⎠
= diag

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 λ1 λ21 . . . λn−11

1 λ2 λ22 . . . λn−12

1 λ3 λ23 . . . λn−13
...

...
...

. . .
...

1 λm λ2m . . . λn−1m

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

c0
c1
c2
...

cn−1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

= diag (V (λ)c)

The decomposition of Zn is easy to write down; it is a Companion matrix with the characteristic
equation

λn − 1 = 0. (4)

The solution to this characteristic equation is given by the roots of identity: λk = e−2πi(k−1)/n = ωk−1n .
Since, we are furthermore allowed to rescale any eigenvector to our discretion, we end up with a
result that the left eigenmatrix is equal to

V −1
n = 1√

n

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ω0⋅0
n ω0⋅1

n ω0⋅2
n . . . ω

0⋅(n−1)
n

ω1⋅0
n ω1⋅1

n ω1⋅2
n . . . ω

1⋅(n−1)
n

ω2⋅0
n ω2⋅1

n ω2⋅2
n . . . ω

2⋅(n−1)
n

...
...

...
...

ω
(n−1)⋅0
n ω

(n−1)⋅1
n ω

(n−1)⋅2
n . . . ω

(n−1)⋅(n−1)
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= Fn

We end up with the following expression for the eigendecomposition of a circulant matrix:

C(c) = VnΛnV
−1
n = F ∗

ndiag (
√
nFnc)Fn (5)

8.2 Base-2 circulant matrices

Fast multiplication of circulant matrices is done through exploiting the formula (5). Indeed, if

C(c) ∈ C2k×2k for some k = log2 n, we can directly use Cooley-Tuckey’s algorithm the product C(c)x
by performing:

1. Evaluate y = Fnx using Cooley-Tuckey FFT algorithm - Θ (n logn) flops.

2. Evaluate z = Fnc using Cooley-Tuckey FFT algorithm - Θ (n logn) flops.

3. Evaluate w = diag(√nz)y using Cooley-Tuckey FFT algorithm - Θ (n) flops.

4. Evaluate F ∗
nw (again) using Cooley-Tuckey FFT algorithm - Θ (n logn) flops.

This is overal an Θ (n logn) operation which defitenely beats the standard Θ (n2) operation.
The product C(c)x describes the process of periodically convolving two “signals” c ∈ Cn× and

x ∈ Cn. To anyone who is reasonably familiar with Fourier theory, the steps above basically state
that, computationally, it is much more efficient to convolve two signals in the “Frequency domain”,
as the operation reduces to a point-wise multiplication. This is enabled by the fact that it is quite
cheap to convert a signal into frequency domain and vice-versa, thanks to the discovery of FFT.
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8.3 Any-sized Toeplitz or circulant matrices

The convolution theorem applies to circulant matrices, but not to the more general class of Toeplitz
matrices. One may ask if all Toeplitz matrices also have a “nice” eigendecomposition that can be
exploited to formulate fast multiplies. This is however not the case. Another strategy which we can
pursue is to see whether we can “embed” a Toeplitz matrix into a larger circulant matrix. It turns
out that this is the right way to go about things. Let us look at a 4 by 4 Toeplitz matrix

⎛
⎜⎜⎜
⎝

t0 t−1 t−2 t−3
t1 t0 t−1 t−2
t2 t1 t0 t−1
t3 t2 t1 t0

⎞
⎟⎟⎟
⎠
.

We can imbed this into the larger circulant matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

t0 t−1 t−2 t−3 t3 t2 t1
t1 t0 t−1 t−2 t−3 t3 t2
t2 t1 t0 t−1 t−2 t−3 t3
t3 t2 t1 t0 t−1 t−2 t−3
t−3 t3 t2 t1 t0 t−1 t−2
t−2 t−3 t3 t2 t1 t0 t−1
t−1 t−2 t−3 t3 t2 t1 t0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The above embedding is useful, because we can use it quite straightforwardly to write a Toeplitz
matrix-vector product as a circulant vector product, i.e.,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t0 t−1 t−2 t−3 t3 t2 t1
t1 t0 t−1 t−2 t−3 t3 t2
t2 t1 t0 t−1 t−2 t−3 t3
t3 t2 t1 t0 t−1 t−2 t−3
t−3 t3 t2 t1 t0 t−1 t−2
t−2 t−3 t3 t2 t1 t0 t−1
t−1 t−2 t−3 t3 t2 t1 t0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
y3
y4
∗
∗
∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is however not adequate for our discussion, because, up till so far, we have only discussed how to
handle radix-2 FFTs. With what we know so far from the previous section, we would like to embed
the Toeplitz matrix into a base-2 circulant matrix. This is done by filling in the circulant matrix
with zeros

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

t0 t−1 t−2 t−3 0 t3 t2 t1
t1 t0 t−1 t−2 t−3 0 t3 t2
t2 t1 t0 t−1 t−2 t−3 0 t3
t3 t2 t1 t0 t−1 t−2 t−3 0
0 t3 t2 t1 t0 t−1 t−2 t−3
t−3 0 t3 t2 t1 t0 t−1 t−2
t−2 t−3 0 t3 t2 t1 t0 t−1
t−1 t−2 t−3 0 t3 t2 t1 t0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x1
x2
x3
x4
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

y1
y2
y3
y4
∗
∗
∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Note that it actually does not matter what numbers you put in the blue entries as long as you keep
it circulant. Notice that circulant matrices are also Toeplitz matrices, so we can also embed a non
base-2 circulant matrix into a base-2 circulant matrix in exactly the same way. For the n = 3 case,
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we have

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

c0 c2 c1 0 0 0 c2 c1
c1 c0 c2 c1 0 0 0 c2
c2 c1 c0 c2 c1 0 0 0
0 c2 c1 c0 c2 c1 0 0
0 0 c2 c1 c0 c2 c1 0
0 0 0 c2 c1 c0 c2 c1
c1 0 0 0 c2 c1 c0 c2
c2 c1 0 0 0 c2 c1 c0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

To assess the complexity of this approach, we need to figure out what the smallest size is of the base-2
circulant matrix in which we can embed the Toeplitz (or circulant) matrix. For this purpose, let us
outline a general embedding strategy. Let t ∈ C2n−1 be the generating vector of a n-by-n Toeplitz
matrix. We can then construct the vector of size ñ = 2k

∗

with entries:

t̃ = ( t0 t1 ⋯ tn−1 0 0 ⋯ 0 t−n+1 t−n+2 ⋯ t−1 )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n+p+(n−1)

,

where k∗ = ⌈log2(2n− 1)⌉ and p = 2k
∗ − 2n+ 1. The Toeplitz matrix-vector product is evaluated from

the construction

C(t̃)(x
0
) = (T (t) ∗

∗ ∗)(x
0
) = (C(t̃)x

∗ ) . (6)

We observe that log(2n) ≲ k∗ ≲ log 2n+1 and therefore 2n < ñ < 2∗2n. The multiplication complexity
is therefore in Θ (n logn).

8.4 Going full circle: fast any-sized DFT matrix-vector multiplication

We now know how to handle any-sized Toeplitz matrices and circulant matrices through the radix-2
DFT algorithm, but up till so far we have not addressed how to handle any-sized DFT matrices.
One may attempt to approach this problem with a similar embedding strategy as done for Toeplitz
matrices, however this approach will not bear much fruit.

One strategy is to observe that DFT matrices themselves are Toeplitz matrices modulo some
scaling factors. This can be seen as follows. Notice that the entries of the DFT matrix are of the

form (Fn)kl = ω(k−1)(l−1)n . The exponent in the term can be factored as

(k − 1)(l − 1) = 1

2
((k − 1) − (l − 1))2 − 1

2
(k − 1) − 1

2
(l − 1).

Since ω
(k−1)(l−1)
n = ω

1
2 (k−1)
n ω

1
2 ((k−1)−(l−1))

2

n ω
1
2 (l−1)
n , we may write

Fn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

ω
1
2
n

ωn
. . .

ω
1
2 ⋅n
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 ω
1
2
n ω2

n ⋯ ⋯ ω
− 1

2 ⋅n
2

n

ω
1
2
n 1 ω

1
2
n

. . .
...

ω2
n ω

1
2
n

. . .
. . .

. . .
...

...
. . .

. . .
. . . ω

1
2
n ω2

n
...

. . . ω
1
2
n 1 ω

1
2
n

ω
− 1

2 ⋅n
2

n ⋯ ⋯ ω2
n ω

1
2
n 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

ω
1
2
n

ωn
. . .

ω
1
2 ⋅n
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The expression above reveals that the DFT matrix Fn = Diagonal × Toeplitz × Diagonal. We have
essentially gone full circle now: first we used the base-2 FFT algorithm to accelerate a toeplitz
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matrix-vector, now we can use our Θ (n logn) toeplitz matrix vector multiply algorithm to implement
Θ (n logn) algorithm for any sized DFT matrix. The algorithm is commonly known as Bluestein’s
FFT algorithm.

We end this section with a note that there exists an entire plethora of variants to the FFT
algorithm. We have only scratched the surface and there exists entire libraries (e.g., FFTW) with
highly efficent implementations of the FFT. A fundamental question one may pose is if there exist
even faster than Θ (n logn) algorithms to multiply a DFT matrix with a vector. It turns out that this
question can be answered in the affirmative for situations where the vector only has a few nonzero
coefficients. Sparse FFT algorithms have been (relatively) recently developed which have sublinear
complexity.

9 Matrix-matrix multiplication and inversion: what we can
do easily with only FFT

9.1 Product of circulant matrices and inverses of circulant matrices

9.1.1 Product

The product of two circulant matrices is fairly easy to compute. From (5), we have

C(c1)C(c2) = (F ∗
ndiag (

√
nFnc1)Fn) (F ∗

ndiag (
√
nFnc2)Fn)

= F ∗
ndiag (

√
nFnc1)diag (

√
nFnc2)Fn

= F ∗
ndiag (n (Fnc1) ∗ (Fnc2))Fn

where ∗ denotes the elementwise product. Hence, to recover the coeficients of the product C(c3) =
C(c1)C(c2), one has to solve n (Fnc1) ∗ (Fnc2) =

√
nFnc3, which gives the formula

c3 =
√
nF ∗

n ((Fnc1) ∗ (Fnc2)) .

Note that circulant matrices are a commuting family of matrices. Indeed,

C(c1)C(c2) = F ∗
ndiag (n (Fnc2) ∗ (Fnc1))Fn = C(c2)C(c1).

9.1.2 Inverse

The inverse of a circulant matrix is also computed in “Fourier space”.

C−1(c) = (F ∗
ndiag (

√
nFnc)Fn)

−1 = F ∗
ndiag (

√
nFnc)

−1
Fn

Solving a Circulant system C(c)x = b can therefore be done in Θ (n logn) through

diag (
√
nFnc) (Fnx) = Fnb.

The generating coefficients of the inverse can also be retrieved in Θ (n logn) time.

9.2 Triangular toeplitz matrices

9.2.1 Product

If we impose lower triangular strucrture on Toeplitz matrices, we can get closure under multiplica-
tion,i.e.,

⎛
⎜⎜⎜⎜
⎝

a0 0
a1 a0
a2 a1 a0
...

. . .
. . .

. . .

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

b0 0
b1 b0
b2 b1 b0
...

. . .
. . .

. . .

⎞
⎟⎟⎟⎟
⎠
=
⎛
⎜⎜⎜⎜
⎝

c0 0
c1 c0
c2 c1 c0
...

. . .
. . .

. . .

⎞
⎟⎟⎟⎟
⎠
.
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To quickly prove this, introduce the shift-down matrix

Z↓[n] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 ⋯ ⋯ 0

1 0
. . .

...

0 1
. . .

. . .
...

...
. . .

. . .
. . . 0

0 ⋯ 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
n×n

and write a n × n lower triangular Toeplitz matrix as

Toep[t] =
n−1

∑
k=0

tkZ
k
↓ [n] =

∞

∑
k=0

tkZ
k
↓ [n].

Evaluating

(
n−1

∑
k=0

akZ
k
↓ [n])(

∞

∑
k=0

bkZ
k
↓ [n])

and taking note of the nilpotentency of Z↓[n], we indeed see that the product is lower-triangular
Toeplitz. Knowing this, it really is necessary to only computethe first column of this product to find
the coefficients that generate the lower triangular Toeplitz matrix. We need to evaluate

⎛
⎜⎜⎜⎜⎜⎜
⎝

a0 0 ⋯ 0

a1 a0
. . .

...
...

. . .
. . . 0

an−1 ⋯ a1 a0

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

b0
b1
...

bn−1

⎞
⎟⎟⎟⎟
⎠
=
⎛
⎜⎜⎜⎜
⎝

c0
c1
...

cn−1

⎞
⎟⎟⎟⎟
⎠
,

which can be done in O(n log2 n) flops with the techniques already discussed.
The product of two polynomials in monomial form:

(∑
i=0

anx
n)

⎛
⎝∑j=0

bjx
j⎞
⎠
= ∑
k=0

ckx
k.

This can be rewritten as:

⎛
⎜⎜⎜⎜
⎝

a0 0
a1 a0
a2 a1 a0
...

. . .
. . .

. . .

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

b0
b1
b2
...

⎞
⎟⎟⎟⎟
⎠
=
⎛
⎜⎜⎜⎜
⎝

c0
c1
c2
...

⎞
⎟⎟⎟⎟
⎠
.

Therefore polynomial multiplication in this basis can be done fast via FFTs. s

9.2.2 Inverse

If we impose upper (lower) triangular strucrture on Toeplitz matrices, we also get closure under
inversion. The inverse of a upper (lower) triangular Toeplitz matrix is also a lower (upper) triangular
Toeplitz. Equiped with a fast toeplitz multiply, we can formulate a fast divide and conquer algorithm
to solve a lower (upper) triangular Toeplitz. Partition a Toeplitz matrix as

T = ( T11 T12
0 T22

) .
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Solving Tx = b gives

(b1
b2

) = ( T11 T12
0 T22

)
−1

(x1

x2
) ,

= ( T −111 −T −111 T12T
−1
22

0 T −122
)(b1
b2

)

= (T
−1
11 (b1 − T12b2)

T −122 b2
)

Notice that T11 and T22 are also upper triangular Toeplitz matrices, and T12 is ordinary Toeplitz, so
we have a fast multiply. Using the above we can formulate a recursive procedure. For a power of 2,
the recurrence satisfies

f(n) ⩽ 2f(n/2) + cn log2 n,

Invoking the master theorem, the inverse of a upper Toeplitz matrix can be computed in O(n log2
2 n)

flops. Of course, similar formula can be derived for lower triangular Toeplitz matrices as well. Notice
that the inverse of an upper triangular toeplitz matrix can be obtained from solving the system
Tx = en.

Polynomial division for p < n:

(
p

∑
i=0

aix
i)

⎛
⎝

n−p

∑
j=0

bjx
j⎞
⎠
+
p−1

∑
j=0

rjx
j =

n

∑
k=0

ckx
k,

where a and c are given, and we need to find the quotient b and remainder r. In matrix form we
have:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a0 0 ⋯ 0

a1 a0
. . .

...
... a1

. . . 0

ap
. . . a0

0 ap a1
...

. . .
. . .

...
0 ⋯ 0 ap

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

b0
b1
b2
...

bn−p

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

r0
r1
r2
...

rp−1
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

c0
c1
c2
...
cp
cp+1
...
cn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

In other words, conventional polynomial division is only concerned with fitting the higher-order terms
in c. Therefore a more appropriate matrix form is:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ap ap−1 . . . a0 0 ⋯ 0

0 ap
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . a0

...
. . .

. . .
. . .

...
...

. . .
. . . ap−1

0 ⋯ ⋯ ⋯ ⋯ 0 ap

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

b0
b1
b2
...

bn−p

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛
⎜⎜⎜⎜
⎝

cp
cp+1
...
cn

⎞
⎟⎟⎟⎟
⎠
.

Therefore polynomial division require fast back substitution for an upper triangular Toeplitz matrix1.
Once the quotient is computed we can evaluate the residual by fast polynomial multiplication in
O(n log2 n) flops.

1Note that if p≪ n it would be better to use the banded structure rather the Toeplitz structure.
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10 Limitations of FFT: matrix-matrix multiplication and in-
version of Toeplitz matrices

10.1 Product of Toeplitz matrices

It is interesting to note that the embedding trick, which we used for the matrix-vector product,
cannot really be used to the same degree to accelerate products of Toeplitz matrices. Of course, we
can still use the FFT algorithm to recover the columns of the product matrix one-by-one, but this
only leads to a Θ (n2 logn) algorithm, while for circulant matrices we were able to find its product
in Θ (n logn) operations. It turns out that, unlike for circulant matrices, the product of two Toeplitz
matrix does not remain Toeplitz. Neither is it a commuting family of matrices.

Nevertheless, there still is structure in the matrix. In fact, as we shall see later, products of
Toeplitz matrices are matrices of low displacement rank. At this point, it is worth mentioning that
from a purely algebraic level (where we disregard possible stability issues) there is a faster way to
compute the product of two Toeplitz matrices. Let us look at an example

⎛
⎜⎜⎜
⎝

t0 t−1 t−2 t−3
t1 t0 t−1 t−2
t2 t1 t0 t−1
t3 t2 t1 t0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

τ0 τ−1 τ−2 τ−3
τ1 τ0 τ−1 τ−2
τ2 τ1 τ0 τ−1
τ3 τ2 τ1 τ0

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎞
⎟⎟⎟
⎠

(7)

If we examine the entries on the main diagonal one-by-one, we oberve a pattern:

a11 = 0⋅t3τ−3 + 0⋅t2τ−2 + 0⋅t1τ−1 + 1⋅t0τ0 + 1⋅t−1τ1 + 1⋅t−2τ2 + 1⋅t−3τ3
a22 = 0⋅t3τ−3 + 0⋅t2τ−2 + 1⋅t1τ−1 + 1⋅t0τ0 + 1⋅t−1τ1 + 1⋅t−2τ2 + 0⋅t−3τ3
a33 = 0⋅t3τ−3 + 1⋅t2τ−2 + 1⋅t1τ−1 + 1⋅t0τ0 + 1⋅t−1τ1 + 0⋅t−2τ2 + 0⋅t−3τ3
a44 = 1⋅t3τ−3 + 1⋅t2τ−2 + 1⋅t1τ−1 + 1⋅t0τ0 + 0⋅t−1τ1 + 0⋅t−2τ2 + 0⋅t−3τ3

For the main diagonal of a general Toeplitz-Toeplitz matrix multiplication, the following iterative
formula can be generated:

a(k+1)(k+1) = akk − t(n−1)−kτ−(n−1)+k + tkτ−k

for k = 1, . . . , n−1, with a11 = ∑n−1k=0 t−kτk. Similar iterative formulas can be derived for the other diag-
onals of the product as well. The method leads to an Θ (n2) algorithm. Notice that we needed only

Θ (n) terms to represent toeplitz matrices, but Θ (n2) to represent a product of Toeplitz matrices.
A question one may have is whether we can represent the product also with only Θ (n) entries.

10.2 Toeplitz matrices

Toep[t]x = b seems harder to solve quickly by embedding techniques. Let Z↑ = ZT↓ denote the up-shift
matrix. These two matrices don’t exactly commute, but do up to low-rank. It is easy to see (exercise)
that

rank(Zp
↑
Zq
↓
−Zq

↓
Zp
↑
) ⩽ 2 min(p, q).

The difficulty of fast algebraic algorithms for finite dimensional Toeplitz matrices can be related to
this issue. How to solve Toeplitz matrices fast is a topic which we shall revisit many times later in
the course, as many applications (e.g., deconvolution) involve this operation.
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