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We want to find the comfmon roots of the system ST, in nullspace computations where Ry = Ry — FA™IR; and Sy = Sy — G(A*)~1S;, one may efficiently
dy, dp—i o vy~ lp perform row reductions with the generators of the Cauchy-like matrix,
p1(z,y) = Z Z Cliszy] v o | _ instead of directly performing operations on the dense matrix itself!
=0 =0 . . . . . . . .
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