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Theory: 
“periodic approximation”
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The concept: “periodic approximation”

• Approximate the dynamical system by a periodic one.
• Notion originally introduced by Halmos.
• Katok & Stepin: 

§ relate the rate of approximation of an automorphism by periodic 
approximation to the type of spectra the automorphism has

Our goal: 
Use this concept to develop a numerical method to approximate 
the spectral decomposition of the Koopman operator.

Class of dynamical systems: 
measure-preserving maps on compact domains.
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Periodic approximation: Discretization
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1. Partition domain into sets
1. Elements of equal measure
2. Diameter shrinks to zero
3. Each partition is a refinement 

(subdivision) of the previous
2. Solve bipartite matching problem to 

get discrete map Tn
1. Solution guaranteed by Hall’s 

marriage problem
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(i) For every D 2 B,

SD :=

Z

D

dS✓

is an orthogonal projector on L2(X, M, µ).
(ii) SD = 0 if D = ; and SD = I if D = S.
(iii) If D1, D2 2 B and D1 \ D2 = ;, then

hSD1g, SD2hi :=

Z

X

(SD1g)⇤ (x) (SD2h) (x)dµ(x) = 0

for every g, h 2 L2(X, M, µ).
(iv) If {Dk}1k=1 is a sequence of pairwise disjoint sets in B, then

lim
m!1

m
X

k=1

SDkg = SDg, D :=
1
[

k=1

Dk

for every g 2 L2(X, M, µ).

The main objective of this paper is to obtain a finite-dimensional approximation to the spectral projection:

(1.3) SDg :=

Z

D

dS✓g

for some given observable g 2 L2(X, M, µ) and interval D ⇢ S. From a practical standpoint, the quantity (1.3)
is of interest for extracting coherent structures in the state-space geometry (see e.g. [3, 2, 9, 10]). Furthermore,
they are of potential use in obtaining low-order models of certain observable dynamics. In that case, D must
be taken as the union of intervals with the largest spectral measure. These intervals correspond to those parts
of the spectrum that describe the most critical components of the global dynamics [12, 13].

1.2. Main contributions. A discretization of the Koopman operator is proposed such that its spectral proper-
ties are approximated weakly in the limit. It is shown that despite the di�culties of not knowing the smoothness
properties of the given projections, control on the error may still be achieved in an average sense.

1.3. Paper organization. section 2 describes the outline of the proposed discretization of the Koopman oper-
ator. section 3 elaborates on the notion of periodic approximation, with details on a theoretical construction of
such an approximation. In section 4 we prove operator convergence. section 5 proves the main spectral results.
Conclusions are provided in section 7.

2. The proposed discretization of the Koopman operator

In this section, we introduce our proposed discretization of the Koopman operator.

2.1. Why permutation operators? We motivate our choice of using permutation operators as a means to
approximate (1.1) as follows. Just like the Koopman operator, permutation operators are unitary, and therefore,
its spectrum is contained on the unit circle. But the Koopman operator also satisfies the following properties:

(i) Ufg = (Uf)(Ug).
(ii) U is a positive operator, i.e. Ug > 0 whenever g > 0.
(iii) The constant function, i.e. g(x) = 1 for every x 2 X, is an invariant of the operator.

Permutation operators are (finite-dimensional) operators which satisfy the aforementioned properties as well.
Overall, they seem to be a natural choice to approximate (1.1). The upcoming results will justify this claim
even further.

2.2. The discretization procedure. The following discretization of the Koopman operator is proposed. Con-
sider any sequence of measurable partitions {Pn}1n=1, where Pn :=

�

pn,1, pn,2, . . . , pn,q(n)

 

such that:

(i) Every partition element pn,j is compact, connected, and of equal measure, i.e.

(2.1) µ(pn,j) =
µ(X)

q(n)
, j 2 {1, 2, . . . , q(n)}

where q : N 7! N is a strictly, monotonically increasing function. Asking for compactness, one gets that
the partition elements intersect. By (2.1), it must follow that these intersections are of zero measure.

(ii) The diameters of the partition elements are bounded by

(2.2) diam(pn,j) := sup
x,y2pn,i

d(x, y)  l(n)

where l : N 7! R is a positive, monotonic function decaying to zero in the limit.
(iii) Pn is a refinement of Pm whenever n > m. That is, every pm,j 2 Pm is the union of some partition

elements in Pn.
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Bi-partite matching 
algorithm

Periodic approximation: Hall Marriage 
Problem
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Gn = (Pn ⇥ P 0
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n, Ẽ)

trim edges to
obtain bijectionpn,k
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Figure 3. Because of the measure-preserving property, the graph Gn satisfies Hall’s marriage
conditions, and hence admits a perfect matching.

Because of these properties, we deduce that:

|NG(B)| :=
X

k2B

0

@

X

l:µ(T (pn,k)\pn,l>0)

1

1

A

�
X

k2B

q(n)

µ(X)

q(n)
X

l=1

µ(T (pn,k) \ pn,l)

=
X

k2B

1 = |B|

for any arbitrary B ⇢ Pn. Hence, Gn has a perfect matching. ⇤

We remark that (2.1) plays an essential role in the proof of lemma 3.2, since it is easy to construct counter
counterexamples of non-uniform partitions which fail to satisfy (3.3): e.g. choose a compact set A 2 M for
which T (A) \ A = ; and pick a partition wherein A is divided into r parts and T (A) into s parts, with r 6= s.
The value of lemma 3.2 is that it can be used as a means to bound the distance between the forward and inverse
images of the partition elements in the Hausdor↵ metric.

Lemma 3.3. Let T : X 7! X satisfy the hypothesis stated in theorem 3.1 and let {Pn}1n=1 be a sequence of
measurable partitions that satisfy both the conditions (2.1) and (2.2). If {Tn : Pn 7! Pn}1n=1 is a sequence of
bijective maps which satisfy the property (3.3) for each n 2 N, then

(3.4) lim
n!1

k
X

l=�k

max
p2Pn

dH(T l(p), T l
n(p)) = 0

for every k 2 N.

Proof. We will prove this claim using induction. Set k = 1, if Tn : Pn 7! Pn is a bijective map satisfying the
property (3.3) then we must have that:

(3.5) dH(T (pn,j), Tn(pn,j))  diam(T (pn,j)) + diam(Tn(pn,j))

and

dH(T�1(pn,j), T
�1
n (pn,j))  diam(T�1(pn,j)) + diam(T�1

n (pn,j)).

Let ✏ > 0 and note that T has a continuous inverse, since the map is a continuous bijection on a compact metric
space X. By compactness, there exist a � > 0 such that:

diam(pn,j) < � ) diam(T (pn,j)) < ✏/4, diam(T�1(pn,j)) < ✏/4

Pick n 2 N so that l(n) < min {�, ✏/4} to obtain:

dH(T�1(pn,j), T
�1
n (pn,j)) + dH(T (pn,j), Tn(pn,j)) <

✏

4
+ min

n

�,
✏

4

o

+
✏

4
+ min

n

�,
✏

4

o

 ✏

Since ✏ and pn,j 2 Pn are both arbitrary, we have proved (3.4) for the case where k = 1.
Now to prove the result for k > 1, we note from the triangle inequality that:

dH(T k(pn,j), T
k
n (pn,j))  dH(T (T k�1(pn,j)), T (T k�1

n (pn,j))) + dH(T (T k�1
n (pn,j)), Tn(T k�1

n (pn,j)))

Hall’s Marriage Problem
• Perfect matching iff for any 

subset of nodes B on the left, 
its cardinality is less than the 
cardinality of the union of 
their neighbors, NG(B). 
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Since ✏ and pn,j 2 Pn are both arbitrary, we have proved (3.4) for the case where k = 1.
Now to prove the result for k > 1, we note from the triangle inequality that:

dH(T k(pn,j), T
k
n (pn,j))  dH(T (T k�1(pn,j)), T (T k�1

n (pn,j))) + dH(T (T k�1
n (pn,j)), Tn(T k�1

n (pn,j)))

A FINITE-DIMENSIONAL APPROXIMATION OF THE KOOPMAN OPERATOR WITH CONVERGENT SPECTRAL PROPERTIES3

The main idea set forth in this paper is to project observables g 2 L2(X, M, µ) onto a finite-dimensional
subspace of indicator functions,

L2
n(X, M, µ) :=

8

<

:

gn : X 7! C |
q(n)
X

j=1

cj�pn,j (x), cj 2 C

9

=

;

, �pn,j (x) =

(

1 x 2 pn,j

0 x /2 pn,j

by means of a smoothing/averaging operation:

(2.3) (Wng)(x) = gn(x) :=

q(n)
X

j=1

gn,j�pn,j (x), gn,j =
q(n)

µ(X)

Z

X

g(x)�pn,j (x)dµ(x)

and then replace (1.1) by its discrete analogue Un : L2
n(X, M, µ) 7! L2

n(X, M, µ) given by

(2.4) (Ungn) (x) :=

q(n)
X

j=1

gn,j�T �1
n (pn,j)

(x)

where Tn : Pn 7! Pn is a discrete map on the partition.
The map Tn is chosen such that it “mimics” the dynamics of the continuous map T . We impose the

condition that Tn is a bijection. By doing so, we obtain a periodic approximation of the dynamics. Since every
partition element is of equal measure (2.1) and since Tn preserves the counting measure on Pn, the resulting
discretization is regarded as one which preserves the measure-preserving properties of the original map, i.e.
µ(pn,j) = µ(Tn(pn,j)) = µ(T�1

n (pn,j)).
The discrete operators {Un}1n=1 are isomorphic to a sequence of finite-dimensional permutation operators.

The spectra for these operators simplify to a pure point spectrum, where the eigenvalues correspond to roots
of unity. Let vn,k =

P

vn,kj�pn,j 2 L2
n(X, M, µ) denote a normalized eigenvector, i.e.

Unvn,k = ei✓n,kvn,k, kvn,kk = 1.

The spectral decomposition can be expressed as:

(2.5) Ungn = Vn⇤nV ⇤
n gn =

⇥

vn,1 · · · vn,q(n)

⇤

2

6

4

ei✓n,1

. . .
ei✓n,q(n)

3

7

5

2

6

4

v⇤n,1
...

v⇤n,q(n)

3

7

5

gn =

q(n)
X

k=1

ei✓n,kSn,✓n,kgn

where Sn,✓n,k : L2
n(X, M, µ) 7! L2

n(X, M, µ) denotes the rank-1 self-adjoint projector:

(2.6) Sn,✓n,kgn = vn,k hvn,k, gni = vn,k

✓

Z

X

v⇤n,k(x)gn(x)dµ

◆

= vn,k

0

@

µ(X)

q(n)

q(n)
X

j=1

v⇤n,kjgn,j

1

A

The discrete analogue to the spectral projection (1.3) may then be defined as:

(2.7) Sn,Dgn :=

Z

D

dSn,✓gn =
X

✓n,k2D

Sn,✓n,kgn

2.3. Overview. An overview of the discretization process is given in fig. 1. Our goal is to see whether it is
possible to construct a sequence of periodic approximation {Tn : Pn 7! Pn}1n=1 such that the associated discrete
operators (2.4) and (2.7) converge to their infinite dimensional counterparts in some meaningful sense.

3. Periodic approximations

The notion of periodic approximation of a measure-preserving map is not new [5, 6, 14, 7, 15, 17]. It is
well-known that the set of measure-preserving automorphisms, which form a group under composition, are
densely filled by periodic transformations under various topologies (see e.g. [5]). These properties were useful
in proving claims such as whether automorphisms are “generically” ergodic or mixing. Katok and Stepin [7]
further showed that the rate at which an automorphism admits a periodic approximation can be directly related
to properties of ergodicity, mixing, and entropy. Certain spectral results were also proven in this context. For
example, it was shown that if T admits cyclic approximation by periodic transformations at a certain rate,
then the spectrum of (1.1) is simple. Regardless, the motivations of these earlier work was clearly di↵erent,
given that the focus was more on characterizing global properties of automorphisms, rather than formulating a
numerical method to approximate its spectral decomposition. Here, the focus will be on the latter, and with
that goal in mind, we will prove the following result.
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We remark that (2.1) plays an essential role in the proof of lemma 3.2, since it is easy to construct counter
counterexamples of non-uniform partitions which fail to satisfy (3.3): e.g. choose a compact set A 2 M for
which T (A) \ A = ; and pick a partition wherein A is divided into r parts and T (A) into s parts, with r 6= s.
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Lemma 3.3. Let T : X 7! X satisfy the hypothesis stated in theorem 3.1 and let {Pn}1n=1 be a sequence of
measurable partitions that satisfy both the conditions (2.1) and (2.2). If {Tn : Pn 7! Pn}1n=1 is a sequence of
bijective maps which satisfy the property (3.3) for each n 2 N, then

(3.4) lim
n!1

k
X

l=�k

max
p2Pn

dH(T l(p), T l
n(p)) = 0

for every k 2 N.

Proof. We will prove this claim using induction. Set k = 1, if Tn : Pn 7! Pn is a bijective map satisfying the
property (3.3) then we must have that:

(3.5) dH(T (pn,j), Tn(pn,j))  diam(T (pn,j)) + diam(Tn(pn,j))

and

dH(T�1(pn,j), T
�1
n (pn,j))  diam(T�1(pn,j)) + diam(T�1

n (pn,j)).

Let ✏ > 0 and note that T has a continuous inverse, since the map is a continuous bijection on a compact metric
space X. By compactness, there exist a � > 0 such that:

diam(pn,j) < � ) diam(T (pn,j)) < ✏/4, diam(T�1(pn,j)) < ✏/4

Pick n 2 N so that l(n) < min {�, ✏/4} to obtain:

dH(T�1(pn,j), T
�1
n (pn,j)) + dH(T (pn,j), Tn(pn,j)) <

✏

4
+ min

n

�,
✏

4

o

+
✏

4
+ min

n

�,
✏

4

o

 ✏

Since ✏ and pn,j 2 Pn are both arbitrary, we have proved (3.4) for the case where k = 1.
Now to prove the result for k > 1, we note from the triangle inequality that:

dH(T k(pn,j), T
k
n (pn,j))  dH(T (T k�1(pn,j)), T (T k�1

n (pn,j))) + dH(T (T k�1
n (pn,j)), Tn(T k�1

n (pn,j)))

Tn is a permutation => unitary

|B|  |NG(B)|
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Discretization overview (1)
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A FINITE-DIMENSIONAL APPROXIMATION OF THE KOOPMAN OPERATOR WITH CONVERGENT SPECTRAL PROPERTIES3
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The map Tn is chosen such that it “mimics” the dynamics of the continuous map T . We impose the

condition that Tn is a bijection. By doing so, we obtain a periodic approximation of the dynamics. Since every
partition element is of equal measure (2.1) and since Tn preserves the counting measure on Pn, the resulting
discretization is regarded as one which preserves the measure-preserving properties of the original map, i.e.
µ(pn,j) = µ(Tn(pn,j)) = µ(T�1

n (pn,j)).
The discrete operators {Un}1n=1 are isomorphic to a sequence of finite-dimensional permutation operators.

The spectra for these operators simplify to a pure point spectrum, where the eigenvalues correspond to roots
of unity. Let vn,k =

P

vn,kj�pn,j 2 L2
n(X, M, µ) denote a normalized eigenvector, i.e.

Unvn,k = ei✓n,kvn,k, kvn,kk = 1.

The spectral decomposition can be expressed as:

(2.5) Ungn = Vn⇤nV ⇤
n gn =

⇥

vn,1 · · · vn,q(n)

⇤

2

6

4

ei✓n,1

. . .
ei✓n,q(n)

3

7

5

2

6

4

v⇤n,1
...

v⇤n,q(n)

3

7

5

gn =

q(n)
X

k=1

ei✓n,kSn,✓n,kgn

where Sn,✓n,k : L2
n(X, M, µ) 7! L2

n(X, M, µ) denotes the rank-1 self-adjoint projector:

(2.6) Sn,✓n,kgn = vn,k hvn,k, gni = vn,k

✓

Z

X

v⇤n,k(x)gn(x)dµ

◆

= vn,k

0

@

µ(X)

q(n)

q(n)
X

j=1

v⇤n,kjgn,j

1

A

The discrete analogue to the spectral projection (1.3) may then be defined as:

(2.7) Sn,Dgn :=

Z

D

dSn,✓gn =
X

✓n,k2D

Sn,✓n,kgn

2.3. Overview. An overview of the discretization process is given in fig. 1. Our goal is to see whether it is
possible to construct a sequence of periodic approximation {Tn : Pn 7! Pn}1n=1 such that the associated discrete
operators (2.4) and (2.7) converge to their infinite dimensional counterparts in some meaningful sense.

3. Periodic approximations

The notion of periodic approximation of a measure-preserving map is not new [5, 6, 14, 7, 15, 17]. It is
well-known that the set of measure-preserving automorphisms, which form a group under composition, are
densely filled by periodic transformations under various topologies (see e.g. [5]). These properties were useful
in proving claims such as whether automorphisms are “generically” ergodic or mixing. Katok and Stepin [7]
further showed that the rate at which an automorphism admits a periodic approximation can be directly related
to properties of ergodicity, mixing, and entropy. Certain spectral results were also proven in this context. For
example, it was shown that if T admits cyclic approximation by periodic transformations at a certain rate,
then the spectrum of (1.1) is simple. Regardless, the motivations of these earlier work was clearly di↵erent,
given that the focus was more on characterizing global properties of automorphisms, rather than formulating a
numerical method to approximate its spectral decomposition. Here, the focus will be on the latter, and with
that goal in mind, we will prove the following result.
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measure. Let:

L

2(Td
,B(Td), µ) :=

�
g : Td 7! C | kgk < 1 

, kgk :=

✓Z

Td

|g(x)|2dµ(x)
◆ 1

2

denote the space of square-integrable functions on Td. The Koopman operator is defined as the
composition U : L2(Td

,B(Td), µ) 7! L

2(Td
,B(Td), µ), given by:

(1) (Ug)(x) := g � T (x)
where g 2 L

2(Td
,B(Td), µ) is the observable.

The Koopman operator (1) is unitary, and therefore, its spectrum lies completely on the unit
circle. Dividing the operator into its singular and regular parts [10], the evolution of an observable
under the operator can be decomposed as:

(2) Uk
g =

Z

S
e

i✓kdS✓g =
NX

l=1

ale
ik✓l

�l +

Z

S
e

ik✓dSr
✓g, k 2 Z.

with S✓ a projection-valued measure on the Borel sigma of the circle B(S). In right-hand side of
(2), �l 2 L

2(Td
,B(Td), µ) are (normalized) eigenfunctions of the operator, al the corresponding

Koopman modes, and Sr
✓ a continuous projection-valued measure on B(S). Furthermore, we note

that N may be infinite.
The goal of this paper is to present a numerical method which allows one to compute the

spectral projection:

(3) SDg :=

Z

D

dS✓g =
X

✓l2D

al�l +

Z

D

dSr
✓g

for some interval D ⇢ S on the circle. The computation of (3) is further used as means to
weakly approximate the spectral density function, which is defined as the distributional derivative
⇢(✓; g) 2 D⇤(S):

(4)

Z

S
'

0(✓)c(✓; g)d✓ = �
Z

S
'(✓)⇢(·; g)d✓, c(✓; g) := hS[�⇡,✓)g, gi

where ' 2 D(S) is a smooth test function on the circle.
We specifically note here that this objective of approximating (3) does not necessarily require

the reconstuction of the actual projector SD : L2(Td
,B(Td), µ) 7! L

2(Td
,B(Td), µ) in the operator

norm. Indeed, our method only aims to perform the approximation in a weak sense.

1.2. Main contributions. A convergent numerical method is introduced to compute (3) for
the class of continuous, Lebesgue measure-preserving invertible transformations on the d-torus.
The method relies on the procedure proposed in [cite] which approximates the dynamical system
with a periodic transformation. The novelty in this paper is that the construction of this peri-
odic approximation is formulated as a bipartite matching problem, without resorting to the heavy
computation of taking set images, typically needed in Markov-chain approximations. For Lips-
chitz continuous maps, our method takes O(ñ

3d
2 ) to construct the periodic map, where ñ denotes

the size of the grid on each dimension. In addition, a fast method is proposed to compute the
spectral projections of the discretized operator in O(dñd log ñ) operations through exploiting its
permutation structure.

Our method is applied to several well-known examples of Lebesgue-measure preserving maps,
which either have a discrete spectrum, continuous spectrum or mixed spectra. To the best of
our knowledge, this is the first numerical method which is able to deal with this class of systems
with any theoretical gaurantees. The applications of our method is demonstrated on the Chirikov
Standard map [6].

1.3. Paper organization. In section 2 some prelimaries are discussed on how the operator
is discretized. In section 3 details of the numerical method are presented. In section 4, our method
of computing spectra is applied to several well-known examples of automorphisms on the torus.
Conclusions of our work are presented in section 5.
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where dH(A,B) := max{supa2A infb2B d(a, b), supb2B infa2A d(a, b)} denotes the Haussdorf metric,
and

An :=
[

p2Pn,p\A 6=;

p

an over-approximation of A by the partition elements of Pn.
As it turns out, any sequence of discrete maps that approximates T in the sense of (10) also

implies convergence of the associated discrete operators (7) to (1) in the strong operator topology.
But more importantly, (10) implies spectral convergence:
(i) For some interval D ⇢ S, if g 2 L

2(X,M, µ) has no nonzero modes ak in (2) corresponding
to eigenvalues on boundary @D = D \ intD, then:

lim
n!1

kSDg � Sn,Dgnk = 0

(ii) Define:

(11) ⇢↵,n(✓; gn) :=
↵

2⇡

↵X

j=1

��Sn,D↵,jgn

��2
�D↵,j (✓),

where

D↵,j := [✓↵,j�1, ✓↵,j) , ✓↵,j := �⇡ +
2⇡

↵

j.

It follows that:

lim
n,↵!1

Z

S
'(✓)⇢↵,n(✓; gn)d✓ =

Z

S
'(✓)⇢(✓; g)d✓, for every ' 2 D(S).

Details on the proof of these statements are found in [..].

3. The numerical method. Based on the premilinaries provided in section 2, the approxi-
mation of (3) through (8) can be broken-down into three steps. The first, and most crucial step,
involves constructing a periodic approximation Tn : Pn 7! Pn to the automorphism T : Td 7! Td.
The second step involves computing a discrete representation of the observable (6). The final step
is the e↵ective computation of (8) given the constructed map Tn in step 1. What follows next is
a description of these three steps.

3.1. Construction of the periodic approximation. In this subsection, we present an
algorithm which aims to find a periodic approximation Tn : Pn 7! Pn of the automorphism
T : Td 7! Td. The algorithm, which involves solving a series of bipartite matching problems, is
shown to correctly generate a periodic map with the asymptotic property described in (10). The
complexity of the method is also characterized.

3.1.1. The bipartite matching problem. A bipartite graph G = (V,E) is a graph where
the set of vertices is partioned into V = X ⇥ Y such that every edge e 2 E has one vertex in X

and one in Y . A matching M is a subset of edges where no two edges share a common vertex.
The goal of the bipartite matching problem is to find a maximum cardinality matching, i.e. one
with largest number of edges possible. A matching is called perfect if all vertices are matched. A
perfect matching is possible if, and only if, the bipartite graph satisfies the so-called Hall’s marriage
conditions (see e.g. [5]):

for every B ⇢ X implies |B|  |NG(B)|
where NG(B) ⇢ Y is the set of all vertices adjacent to some vertex in A.

Bipartite matching problem belong to the class of combinatorial problems for which well-
established polynomial time algorithms exist: the Ford-Fulkerson algorithm may be used to find
a maximum cardinality matching in O(|V ||E|) operations, wheareas the Hopcroft-Karp algorithm
does it in O(

p|V ||E|) (see e.g. [1, 7]).
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Basic outline of numerical method
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• Class of dynamical systems:
Volume preserving maps on the d-torus

• Two steps:
§ 1. Construct periodic approximation.
§ 2. Compute spectral projections of the periodic map.  
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1. Construct periodic approximation
Basic idea:
• Partition the d-torus into boxes and define grid points
• Evaluate map at grid points
• Construct neighborhood graph
• Solve bipartite matching problem
• Solution of bipartite matching is a candidate periodic discrete map. 

14
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2. Compute spectral projection
Basic idea:
• Use the Koopman operator of discrete map to approximate spectral projections.
• Discrete Koopman operator has a permutation structure.
• Find cycle decomposition of the permutation.
• Once the cycle decomposition is known, spectral projections can be computed 

with the FFT algorithm.

Matlab routine:
• Uses David Gleich MatlabBGL graph library to find periodic approximation.
• Code will be made public simultaneously with the papers.

15
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Cat map
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4. Examples. We have tested our numerical method on several examples of automorphisms
on the torus. An implementation of our method is made available on the group website3 Note
that in this implementation, we use the less e�cient Ford-Fulkerson method, given the direct
availability high performance code4 for this algorithm. What follows next is a discussion of the
obtained results.

4.1. Rotation on the d-torus. Consider the following type of maps:

(24) T (x1, . . . , xd) = (x1 + !1, . . . , xd + !d) mod 1, (!1, . . . ,!d) 2 Rd
.

Maps such as these have a fully discrete spectrum wherein the Fourier basis is also the eigenbasis.
In Figure 1, we plot the spectral density function (4) for the case when d = 1, !1 = 1/3, and:

(25) g(x) =
1

2 + cos2(6⇡x) + sin(7⇡x)

It is evident from the results that the energy of the spectrum gets concentrated at the eigenfre-

quencies of the actual spectra (i.e. ei
2⇡(k�1)

3 for k = 1, 2, 3) as the partition is repeatedly refined.

t = 0

t = //2

t = 3//2

t = /

(a) n = 100

t = 0

t = //2

t = 3//2

t = /

(b) n = 1000

t = 0

t = //2

t = 3//2

t = /

(c) n = 10000

Fig. 1: Approximations to the spectral density function (??) for the rotation on the circle with
! = 1/3. The depicted spectra correspond to observable shown in (25), the spectral resolution is
set to ↵ = 500.

4.2. Arnold’s cat map. Consider the area-preserving map T : T2 7! T2, defined by

(26) T (x1, x2) = (2x1 + x2, x1 + x2) mod 1

Arnold’s cat map (26) is a well known example of a Anosov di↵eomorphism, in which the dynamics
are locally characterizable by expansive and contractive directions. The cat map is mixing, and
hence, also ergodic. A typical approach to prove this fact is tho show that the associated Koopman
operator of (26) has a so-called “Lebesgue spectrum” (see [3]). What this entails is that there exisits
an orthonormal basis for L

2(T2
,B(T2), µ) consisting of the constant function and {'s,t}s2I,t2Z,

I ⇢ N, such that:
U l

's,t = 's,t+l, l 2 Z.

The existence of a such a basis leads to the property that the eigenspace at � = 1 is simple, and
hence, consisting only of constant functions. Furthermore, the remaining part of the spectrum is
continuous, i.e. for every g 2 L

2(T2
,B(T2), µ) orthogonal to the constant function, the measure:

⌫(D; g) = hSDg, gi is absolutely continuous w.r.t. the Lebesgue measure.
For the purpose of finding analytical solutions of spectra to cross-check our numerical results,

it is worthile to explicitly go through certain details of the construction of this “Lebesgue basis”.
For the cat map, this basis turns out to be a specific re-ordering of the Fourier basis:

{e2⇡i(k1x1+k2x2)}(k1,k2)2Z2

3link: http://mgroup.me.ucsb.edu
4see MatlabBGL: https://www.cs.purdue.edu/homes/dgleich/packages/matlab bgl/
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• Arnold’s cat map:

•An example of an Anosov diffeomorphism
•Has “Lebesgue spectrum”
•The following observables give the following densities:

A CONVERGENT NUMERICALMETHOD FOR COMPUTINGKOOPMAN SPECTRAOF VOLUME-PRESERVINGMAPS ON THE TORUS11

Indeed, by applying the Koopman operator (1) on a Fourier basis elements, we observe the relation:

Ue2⇡i(k1x1+k2x2) = e

i2⇡(k0
1x1+k0

2x2)

where:
k

0
1 = 2k1 + k2

k

0
2 = k1 + k2

, (k1, k2) 2 Z2
.

By partitioning Z2 into the orbits of (??), i.e.

Z2 = ⇠0 [ ⇠1 [ ⇠2 [ ⇠3 . . . , ⇠0 = (0, 0),

we see that all orbits, except for ⇠0, consists of countable number of elements.
The spectral density function (4) of a generic observable is found by solving the trigonometric

moment problem [2]:

dl := hU l
g, gi =

Z

S

e

il✓
⇢(✓; g)d✓, l 2 Z.

In the specific case when g 2 L

2(T2
,B(T2), µ) consists of a single Fourier element, we notice that:

(i) if (k1, k2) = (0, 0), dl = 1, 8l 2 Z which leads to ⇢(✓; 1) = �(✓) (i.e. Dirac delta distribution),
(ii) if (k1, k2) 6= (0, 0), dl = 0, 8l 6= 0 and d0 = 1, which implies that ⇢(✓; ei2⇡(k1x1+k2x2)) = 1 (i.e.

uniform density).
By using these properties of the Fourier elements, the spectral density function (4) of a generic
observable of the form:

g = a0 +
X

s2N

X

t2Z

as,t's,t 2 L

2(T2
,B(T2), µ)

is given by the expression:

⇢(✓; g) = a0�(✓) +
1

2⇡

X

l2Z

 
X

s2N

as,tas,t+l

!
e

il✓
.

For observables which consist of just a finite number of harmonic components, the spectral density
function can be obtained by hand, for example:
(27)
g1(x1, x2) = e

2⇡i(2x1+x2) ) ⇢(✓; g1) =
1
2⇡

g2(x1, x2) = e

2⇡i(2x1+x2) + 1
2e

(2⇡i(5x1+3x2)) ) ⇢(✓; g2) =
1
2⇡

�
5
4 + cos ✓

�

g3(x1, x2) = e

2⇡i(2x1+x2) + 1
2e

(2⇡i(5x1+3x2)) + 1
4e

2⇡i(13x1+8x2) ) ⇢(✓; g3) =
1
2⇡

�
21
16 + 10

8 cos ✓ + 1
2 cos 2✓

�

In Figure 2, the spectral densities of these observables are approximated with (11) using our
proposed method. Also shown is the root- squared-mean error:

(28) rsmi =
1

↵

↵X

j=1

|⇢↵,n(✓j ; gin)� ⇢(✓j ; gi)|2 ⇡ 1

2⇡

Z

S
|⇢↵,n(✓; gin)� ⇢(✓; gi)|2 d✓

Clearly, the result indicate that better approximations are obtained by increasing the discretization
level.

4.3. Skew product transformations. One can use skew-product of dynamical systems to
construct relative simple examples of dynamical systems with mixed spectra. Consider:

(29) T (x1, x2) = (x1 + �, x1 + x2) mod 1

where � 2 [0, 1) Note that, in this case, the absolute continuous part does not refer to any chaotic
dynamics.



Mechanical Engineering. UCSB

Cat map: some results

18

g1(x1, x2) = exp(i2⇡(2x1 + x2))

⇢(✓; g1) =
1

2⇡
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g1(x1, x2) = exp(i2⇡(2x1 + x2))

⇢(✓; g1) =
1

2⇡
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g1(x1, x2) = exp(i2⇡(2x1 + x2))

⇢(✓; g1) =
1

2⇡
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g1(x1, x2) = exp(i2⇡(2x1 + x2))

⇢(✓; g1) =
1

2⇡
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g2(x1, x2) = exp(i2⇡(2x1 + x2)) + exp(i2⇡(5x1 + 3x2))

⇢(✓; g2) =
1

2⇡

✓
5

4

+ cos ✓

◆
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g2(x1, x2) = exp(i2⇡(2x1 + x2)) + exp(i2⇡(5x1 + 3x2))

⇢(✓; g2) =
1

2⇡

✓
5

4

+ cos ✓

◆
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g2(x1, x2) = exp(i2⇡(2x1 + x2)) + exp(i2⇡(5x1 + 3x2))

⇢(✓; g2) =
1

2⇡

✓
5

4

+ cos ✓

◆
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g2(x1, x2) = exp(i2⇡(2x1 + x2)) + exp(i2⇡(5x1 + 3x2))

⇢(✓; g2) =
1

2⇡

✓
5

4

+ cos ✓

◆
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g3(x1, x2) = exp(i2⇡(2x1 + x2)) + exp(i2⇡(5x1 + 3x2)) + exp(i2⇡(13x1 + 8x2))

⇢(✓; g3) =
1

2⇡

✓
21

16

+

10

8

cos ✓ +
1

2

cos 2✓

◆
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g3(x1, x2) = exp(i2⇡(2x1 + x2)) + exp(i2⇡(5x1 + 3x2)) + exp(i2⇡(13x1 + 8x2))

⇢(✓; g3) =
1

2⇡

✓
21

16

+

10

8

cos ✓ +
1

2

cos 2✓

◆
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g3(x1, x2) = exp(i2⇡(2x1 + x2)) + exp(i2⇡(5x1 + 3x2)) + exp(i2⇡(13x1 + 8x2))

⇢(✓; g3) =
1

2⇡

✓
21

16

+

10

8

cos ✓ +
1

2

cos 2✓

◆
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g3(x1, x2) = exp(i2⇡(2x1 + x2)) + exp(i2⇡(5x1 + 3x2)) + exp(i2⇡(13x1 + 8x2))

⇢(✓; g3) =
1

2⇡

✓
21

16

+

10

8

cos ✓ +
1

2

cos 2✓

◆
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Chirikov Standard map

• Chirikov-Taylor map:

• Model of a kicked rotor.
• Has mixed spectra?
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 = -   

 = 0

Im 
 = /2

 = - /2
Re 

n=250
n=500
n=1000
n=2000
exact

(a) Spectral density function for observable

 = -   

 = 0

Im 
 = /2

 = - /2
Re 

n=250
n=500
n=1000
n=2000
exact

(b) Spectral density function for observable

 = -   

 = 0

Im 
 = /2

 = - /2
Re 

n=250
n=500
n=1000
n=2000
exact

(c) Spectral density function for observable

ñ rsm1 rsm2 rsm3

250 0.0185 0.0265 0.0299
500 0.0087 0.0123 0.0139
1000 0.0045 0.0065 0.0074
2000 0.0022 0.0030 0.0034

(d) Error

Fig. 2: Approximations to the spectral density function of the observables in (27) at discretization
levels. The spectral resolution is set to ↵ = 800.

4.4. The Chirikov standard map. The third example which we consider is the family of
area-preserving maps introduced by Chirikov [6]:

(30) T (x1, x2) =


x1 + x2 +K sin(2⇡x1)

x2 +K sin(2⇡x1)

�
mod 1

Note that when K = 0, we obtain the twist map as a special case:

T (x) =


x1 + x2

x2

�
mod 1

This map has, other than the simple eigenspace at eigenfrequency ✓ = 0, a fully continuous
spectrum. In contrast to the Cat map, where the continuous spectrum was a consequence of the
chaotic nature of the system, the continuous spectrum here is caused by a foliation of (quasi)-
periodic trajectories with a continuously varying rotation number. An explicit expression of the
projection-valued measure may be obtained under the observation that g =

P
j2Z gj(x2)eijx1 , i.e.

Uk
g =

Z 2⇡

0
e

ik✓
dS(✓)g, dS(✓)g =

X

j2Z

gj(x2)�(✓ � jkx1)d✓.

For positive perturbations K > 0, the state-space of the standard map makes a gradual transition
from regular (quasi)-periodic to fully chaotic behavior. In Figures 4 to 8 the spectral properties of
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(a) K = 0 (b) K = 0.05

(c) K = 0.1 (d) K = 0.15

(e) K = 0.2 (f) K = 0.25

(g) K = 0.3 (h) K = 0.35

Fig. 7: Formation of the eigenfunction at eigenfrequency ✓ = 2⇡/3 corresponding to the observable
(31). Approximations of the spectral projections (8) are computed for the domain D = [2⇡/3 �
0.02, 2⇡/3 + 0.02] with the discretization level set to n = 1000. The depicted projection generates
an period-3 partition of the state-space.
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(a) K = 0 (b) K = 0.05

(c) K = 0.1 (d) K = 0.15

(e) K = 0.2 (f) K = 0.25

(g) K = 0.3 (h) K = 0.35

Fig. 7: Formation of the eigenfunction at eigenfrequency ✓ = 2⇡/3 corresponding to the observable
(31). Approximations of the spectral projections (8) are computed for the domain D = [2⇡/3 �
0.02, 2⇡/3 + 0.02] with the discretization level set to n = 1000. The depicted projection generates
an period-3 partition of the state-space.
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the standard map are examined for K-values ranging between 0 and 0.35. Results are shown for
the observable:

(31) g(x) = sin(2⇡x1) cos(2⇡x2) + sin(⇡x2) +
1

sin(⇡x2
1) + 1

� 1

Figure 4 displays approximations of the spectral density functions (??). It can be seen that sharp
peaks form at locations other than eigen-frequency ✓ = 0. These peaks illustrate that the purely
continuous spectra disintegrate, revealing existence of discrete spectra for the operator. Indeed,
it has been shown that the standard map exhibits mixed spectra, with eigenvalues appearing at
all roots of unity (we discussed this in class right?). Eigenfunctions of (1) may be recovered
from the spectral projections by means of centering the projection on narrow intervals around the
respective eigenfrequency. In Figures 5 to 8, this is done for respectively ✓ = 0,⇡, 2⇡/3,⇡/2. The
eigenfunction at ✓ = 0 yields an invariant partition of the state-space, the eigenfunctions of the
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Fig. 7: Formation of the eigenfunction at eigenfrequency ✓ = 2⇡/3 corresponding to the observable
(31). Approximations of the spectral projections (8) are computed for the domain D = [2⇡/3 �
0.02, 2⇡/3 + 0.02] with the discretization level set to n = 1000. The depicted projection generates
an period-3 partition of the state-space.
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Fig. 7: Formation of the eigenfunction at eigenfrequency ✓ = 2⇡/3 corresponding to the observable
(31). Approximations of the spectral projections (8) are computed for the domain D = [2⇡/3 �
0.02, 2⇡/3 + 0.02] with the discretization level set to n = 1000. The depicted projection generates
an period-3 partition of the state-space.
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the standard map are examined for K-values ranging between 0 and 0.35. Results are shown for
the observable:

(31) g(x) = sin(2⇡x1) cos(2⇡x2) + sin(⇡x2) +
1

sin(⇡x2
1) + 1

� 1

Figure 4 displays approximations of the spectral density functions (??). It can be seen that sharp
peaks form at locations other than eigen-frequency ✓ = 0. These peaks illustrate that the purely
continuous spectra disintegrate, revealing existence of discrete spectra for the operator. Indeed,
it has been shown that the standard map exhibits mixed spectra, with eigenvalues appearing at
all roots of unity (we discussed this in class right?). Eigenfunctions of (1) may be recovered
from the spectral projections by means of centering the projection on narrow intervals around the
respective eigenfrequency. In Figures 5 to 8, this is done for respectively ✓ = 0,⇡, 2⇡/3,⇡/2. The
eigenfunction at ✓ = 0 yields an invariant partition of the state-space, the eigenfunctions of the
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(a) K = 0 (b) K = 0.05

(c) K = 0.1 (d) K = 0.15

(e) K = 0.2 (f) K = 0.25

(g) K = 0.3 (h) K = 0.35

Fig. 7: Formation of the eigenfunction at eigenfrequency ✓ = 2⇡/3 corresponding to the observable
(31). Approximations of the spectral projections (8) are computed for the domain D = [2⇡/3 �
0.02, 2⇡/3 + 0.02] with the discretization level set to n = 1000. The depicted projection generates
an period-3 partition of the state-space.
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Fig. 7: Formation of the eigenfunction at eigenfrequency ✓ = 2⇡/3 corresponding to the observable
(31). Approximations of the spectral projections (8) are computed for the domain D = [2⇡/3 �
0.02, 2⇡/3 + 0.02] with the discretization level set to n = 1000. The depicted projection generates
an period-3 partition of the state-space.
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the standard map are examined for K-values ranging between 0 and 0.35. Results are shown for
the observable:

(31) g(x) = sin(2⇡x1) cos(2⇡x2) + sin(⇡x2) +
1

sin(⇡x2
1) + 1

� 1

Figure 4 displays approximations of the spectral density functions (??). It can be seen that sharp
peaks form at locations other than eigen-frequency ✓ = 0. These peaks illustrate that the purely
continuous spectra disintegrate, revealing existence of discrete spectra for the operator. Indeed,
it has been shown that the standard map exhibits mixed spectra, with eigenvalues appearing at
all roots of unity (we discussed this in class right?). Eigenfunctions of (1) may be recovered
from the spectral projections by means of centering the projection on narrow intervals around the
respective eigenfrequency. In Figures 5 to 8, this is done for respectively ✓ = 0,⇡, 2⇡/3,⇡/2. The
eigenfunction at ✓ = 0 yields an invariant partition of the state-space, the eigenfunctions of the
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(a) K = 0 (b) K = 0.05

(c) K = 0.1 (d) K = 0.15

(e) K = 0.2 (f) K = 0.25

(g) K = 0.3 (h) K = 0.35

Fig. 7: Formation of the eigenfunction at eigenfrequency ✓ = 2⇡/3 corresponding to the observable
(31). Approximations of the spectral projections (8) are computed for the domain D = [2⇡/3 �
0.02, 2⇡/3 + 0.02] with the discretization level set to n = 1000. The depicted projection generates
an period-3 partition of the state-space.
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Fig. 7: Formation of the eigenfunction at eigenfrequency ✓ = 2⇡/3 corresponding to the observable
(31). Approximations of the spectral projections (8) are computed for the domain D = [2⇡/3 �
0.02, 2⇡/3 + 0.02] with the discretization level set to n = 1000. The depicted projection generates
an period-3 partition of the state-space.
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the standard map are examined for K-values ranging between 0 and 0.35. Results are shown for
the observable:

(31) g(x) = sin(2⇡x1) cos(2⇡x2) + sin(⇡x2) +
1

sin(⇡x2
1) + 1

� 1

Figure 4 displays approximations of the spectral density functions (??). It can be seen that sharp
peaks form at locations other than eigen-frequency ✓ = 0. These peaks illustrate that the purely
continuous spectra disintegrate, revealing existence of discrete spectra for the operator. Indeed,
it has been shown that the standard map exhibits mixed spectra, with eigenvalues appearing at
all roots of unity (we discussed this in class right?). Eigenfunctions of (1) may be recovered
from the spectral projections by means of centering the projection on narrow intervals around the
respective eigenfrequency. In Figures 5 to 8, this is done for respectively ✓ = 0,⇡, 2⇡/3,⇡/2. The
eigenfunction at ✓ = 0 yields an invariant partition of the state-space, the eigenfunctions of the
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(a) K = 0 (b) K = 0.05

(c) K = 0.1 (d) K = 0.15

(e) K = 0.2 (f) K = 0.25

(g) K = 0.3 (h) K = 0.35

Fig. 7: Formation of the eigenfunction at eigenfrequency ✓ = 2⇡/3 corresponding to the observable
(31). Approximations of the spectral projections (8) are computed for the domain D = [2⇡/3 �
0.02, 2⇡/3 + 0.02] with the discretization level set to n = 1000. The depicted projection generates
an period-3 partition of the state-space.
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Fig. 7: Formation of the eigenfunction at eigenfrequency ✓ = 2⇡/3 corresponding to the observable
(31). Approximations of the spectral projections (8) are computed for the domain D = [2⇡/3 �
0.02, 2⇡/3 + 0.02] with the discretization level set to n = 1000. The depicted projection generates
an period-3 partition of the state-space.

A CONVERGENT NUMERICALMETHOD FOR COMPUTINGKOOPMAN SPECTRAOF VOLUME-PRESERVINGMAPS ON THE TORUS13

(a) r = 1 (b) r = 2

(c) r = 3 (d) r = 4

(e) r = 5 (f) r = 6

(g) r = 7 (h) r = 8

Fig. 3: D =
⇥
⇡
2 � �

1
2

�r ⇡
2 ,

⇡
2 +

�
1
2

�r ⇡
2

⇤

the standard map are examined for K-values ranging between 0 and 0.35. Results are shown for
the observable:

(31) g(x) = sin(2⇡x1) cos(2⇡x2) + sin(⇡x2) +
1

sin(⇡x2
1) + 1

� 1

Figure 4 displays approximations of the spectral density functions (??). It can be seen that sharp
peaks form at locations other than eigen-frequency ✓ = 0. These peaks illustrate that the purely
continuous spectra disintegrate, revealing existence of discrete spectra for the operator. Indeed,
it has been shown that the standard map exhibits mixed spectra, with eigenvalues appearing at
all roots of unity (we discussed this in class right?). Eigenfunctions of (1) may be recovered
from the spectral projections by means of centering the projection on narrow intervals around the
respective eigenfrequency. In Figures 5 to 8, this is done for respectively ✓ = 0,⇡, 2⇡/3,⇡/2. The
eigenfunction at ✓ = 0 yields an invariant partition of the state-space, the eigenfunctions of the
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(c) K = 0.1 (d) K = 0.15

(e) K = 0.2 (f) K = 0.25

(g) K = 0.3 (h) K = 0.35

Fig. 7: Formation of the eigenfunction at eigenfrequency ✓ = 2⇡/3 corresponding to the observable
(31). Approximations of the spectral projections (8) are computed for the domain D = [2⇡/3 �
0.02, 2⇡/3 + 0.02] with the discretization level set to n = 1000. The depicted projection generates
an period-3 partition of the state-space.
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Fig. 7: Formation of the eigenfunction at eigenfrequency ✓ = 2⇡/3 corresponding to the observable
(31). Approximations of the spectral projections (8) are computed for the domain D = [2⇡/3 �
0.02, 2⇡/3 + 0.02] with the discretization level set to n = 1000. The depicted projection generates
an period-3 partition of the state-space.
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the standard map are examined for K-values ranging between 0 and 0.35. Results are shown for
the observable:

(31) g(x) = sin(2⇡x1) cos(2⇡x2) + sin(⇡x2) +
1

sin(⇡x2
1) + 1

� 1

Figure 4 displays approximations of the spectral density functions (??). It can be seen that sharp
peaks form at locations other than eigen-frequency ✓ = 0. These peaks illustrate that the purely
continuous spectra disintegrate, revealing existence of discrete spectra for the operator. Indeed,
it has been shown that the standard map exhibits mixed spectra, with eigenvalues appearing at
all roots of unity (we discussed this in class right?). Eigenfunctions of (1) may be recovered
from the spectral projections by means of centering the projection on narrow intervals around the
respective eigenfrequency. In Figures 5 to 8, this is done for respectively ✓ = 0,⇡, 2⇡/3,⇡/2. The
eigenfunction at ✓ = 0 yields an invariant partition of the state-space, the eigenfunctions of the
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(a) K = 0 (b) K = 0.05

(c) K = 0.1 (d) K = 0.15

(e) K = 0.2 (f) K = 0.25

(g) K = 0.3 (h) K = 0.35

Fig. 7: Formation of the eigenfunction at eigenfrequency ✓ = 2⇡/3 corresponding to the observable
(31). Approximations of the spectral projections (8) are computed for the domain D = [2⇡/3 �
0.02, 2⇡/3 + 0.02] with the discretization level set to n = 1000. The depicted projection generates
an period-3 partition of the state-space.

18 N. GOVINDARAJAN, R. MOHR, S. CHANDRASEKARAN, AND I. MEZIC

(a) K = 0 (b) K = 0.05

(c) K = 0.1 (d) K = 0.15

(e) K = 0.2 (f) K = 0.25

(g) K = 0.3 (h) K = 0.35

Fig. 7: Formation of the eigenfunction at eigenfrequency ✓ = 2⇡/3 corresponding to the observable
(31). Approximations of the spectral projections (8) are computed for the domain D = [2⇡/3 �
0.02, 2⇡/3 + 0.02] with the discretization level set to n = 1000. The depicted projection generates
an period-3 partition of the state-space.
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the standard map are examined for K-values ranging between 0 and 0.35. Results are shown for
the observable:

(31) g(x) = sin(2⇡x1) cos(2⇡x2) + sin(⇡x2) +
1

sin(⇡x2
1) + 1

� 1

Figure 4 displays approximations of the spectral density functions (??). It can be seen that sharp
peaks form at locations other than eigen-frequency ✓ = 0. These peaks illustrate that the purely
continuous spectra disintegrate, revealing existence of discrete spectra for the operator. Indeed,
it has been shown that the standard map exhibits mixed spectra, with eigenvalues appearing at
all roots of unity (we discussed this in class right?). Eigenfunctions of (1) may be recovered
from the spectral projections by means of centering the projection on narrow intervals around the
respective eigenfrequency. In Figures 5 to 8, this is done for respectively ✓ = 0,⇡, 2⇡/3,⇡/2. The
eigenfunction at ✓ = 0 yields an invariant partition of the state-space, the eigenfunctions of the
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(c) K = 0.1 (d) K = 0.15

(e) K = 0.2 (f) K = 0.25

(g) K = 0.3 (h) K = 0.35

Fig. 7: Formation of the eigenfunction at eigenfrequency ✓ = 2⇡/3 corresponding to the observable
(31). Approximations of the spectral projections (8) are computed for the domain D = [2⇡/3 �
0.02, 2⇡/3 + 0.02] with the discretization level set to n = 1000. The depicted projection generates
an period-3 partition of the state-space.
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Fig. 7: Formation of the eigenfunction at eigenfrequency ✓ = 2⇡/3 corresponding to the observable
(31). Approximations of the spectral projections (8) are computed for the domain D = [2⇡/3 �
0.02, 2⇡/3 + 0.02] with the discretization level set to n = 1000. The depicted projection generates
an period-3 partition of the state-space.

A CONVERGENT NUMERICALMETHOD FOR COMPUTINGKOOPMAN SPECTRAOF VOLUME-PRESERVINGMAPS ON THE TORUS13

(a) r = 1 (b) r = 2

(c) r = 3 (d) r = 4

(e) r = 5 (f) r = 6

(g) r = 7 (h) r = 8

Fig. 3: D =
⇥
⇡
2 � �

1
2

�r ⇡
2 ,

⇡
2 +

�
1
2

�r ⇡
2

⇤

the standard map are examined for K-values ranging between 0 and 0.35. Results are shown for
the observable:

(31) g(x) = sin(2⇡x1) cos(2⇡x2) + sin(⇡x2) +
1

sin(⇡x2
1) + 1

� 1

Figure 4 displays approximations of the spectral density functions (??). It can be seen that sharp
peaks form at locations other than eigen-frequency ✓ = 0. These peaks illustrate that the purely
continuous spectra disintegrate, revealing existence of discrete spectra for the operator. Indeed,
it has been shown that the standard map exhibits mixed spectra, with eigenvalues appearing at
all roots of unity (we discussed this in class right?). Eigenfunctions of (1) may be recovered
from the spectral projections by means of centering the projection on narrow intervals around the
respective eigenfrequency. In Figures 5 to 8, this is done for respectively ✓ = 0,⇡, 2⇡/3,⇡/2. The
eigenfunction at ✓ = 0 yields an invariant partition of the state-space, the eigenfunctions of the
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Conclusions

• Asymptotic convergence of the spectra is guaranteed in a weak-sense.
• Method can deal with continuous spectra.
• Method is only tractable for low dimensional maps.

Associated papers (in preparation):
§ Theory: “A finite dimensional approximation of the Koopman operator with convergent 

spectral properties” N. Govindarajan, R Mohr, S. Chandrasekaran, I. Mezić.
§ Numerical method: “A convergent numerical method for computing Koopman spectra 

of volume-preserving maps on the torus” N. Govindarajan, R. Mohr, S. 
Chandrasekaran, I. Mezić.

§ Generalization to flows: “On the approximation of Koopman spectral properties of 
measure-preserving flows ” N. Govindarajan, R. Mohr, S. Chandrasekaran, I. Mezić.
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