UC SANTA BARBARA engineering

The convergence of research and innovation.

A toolbox for computing spectral properties of dynamical systems

N. Govindarajan, R. Mohr, S. Chandrasekaran, I. Mezić

SIAM DS17
May 23, 2017

Outline

- Theory: "periodic approximation"
- Numerical method
- Examples
- Cat map
- Chirikov Standard map
- Conclusions

Theory: "periodic approximation"

The concept: "periodic approximation"

- Approximate the dynamical system by a periodic one.
- Notion originally introduced by Halmos.
- Katok \& Stepin:
- relate the rate of approximation of an automorphism by periodic approximation to the type of spectra the automorphism has

Our goal:
Use this concept to develop a numerical method to approximate the spectral decomposition of the Koopman operator.

Class of dynamical systems:
measure-preserving maps on compact domains.

Periodic approximation: Discretization

1. Partition domain into sets
2. Elements of equal measure
3. Diameter shrinks to zero
4. Each partition is a refinement (subdivision) of the previous
5. Solve bipartite matching problem to get discrete map T_{n}
6. Solution guaranteed by Hall's marriage problem

$$
\mu\left(p_{n, j}\right)=\frac{\mu(X)}{q(n)}
$$

Periodic approximation: Hall Marriage Problem

$G_{n}=\left(\mathcal{P}_{n} \times \mathcal{P}_{n}^{\prime}, E\right)$
$\tilde{G}_{n}=\left(\mathcal{P}_{n} \times \mathcal{P}_{n}^{\prime}, \tilde{E}\right)$

$G_{n}=\left(\mathcal{P}_{n} \times \mathcal{P}_{n}^{\prime}, E\right)$

Bi-partite matching algorithm

Hall's Marriage Problem

- Perfect matching iff for any subset of nodes B on the left, its cardinality is less than the cardinality of the union of their neighbors, $\mathrm{N}_{\mathrm{G}}(\mathrm{B})$.

$$
\begin{aligned}
|B| & \leq\left|N_{G}(B)\right| \\
\left|N_{G}(B)\right| & :=\sum_{k \in B}\left(\sum_{l: \mu\left(T\left(p_{n, k}\right)\left(p_{n, l},>0\right)\right.} 1\right) \\
& \geq \sum_{k \in B} \frac{q(n)}{\mu(X)} \sum_{l=1}^{q(n)} \mu\left(T\left(p_{n, k}\right) \cap p_{n, l)}\right. \\
& =\sum_{k \in B} 1=|B|
\end{aligned}
$$

Tn is a permutation => unitary

Discretization overview (1)

Discretization overview (2)

discretization of the astomorphism:

$$
T_{n}: \mathcal{P}_{n} \mapsto \mathcal{P}_{n}
$$

T_{n} is a periodic approximation
discretization of the observable:

$$
\begin{gathered}
\left(W_{n} g\right)(x)=g_{n}(x):=\sum_{j=1}^{q(n)} g_{n, j} X_{p_{n, j}}(x) \\
g_{n, j}:=\frac{q(n)}{\mu(X)} \int_{X} g(x) X_{P_{n, j}}(x) d \mu
\end{gathered}
$$

Discretization overview (3)

discrete case:

$$
\mathcal{U}_{n} v_{n, k}=e^{i \theta_{n, k}} v_{n, k}
$$

$$
\mathcal{S}_{n, \theta_{n, k}} g_{n}=v_{n, k}\left\langle v_{n, k}, g_{n}\right\rangle
$$

$$
\begin{aligned}
& L_{n}^{2}\left(X, M_{1, \mu}\right):=\left\{g_{n}: X \rightarrow C \mid \quad \sum_{j=1}^{q(n)} c_{j} X_{p_{n, j}}(x), \quad c_{j} \in \mathbb{C}\right\}, \quad X_{p_{n, j}}(x)= \begin{cases}1 & x \in p_{n, j} \\
0 & x \notin p_{n, j}\end{cases} \\
& u_{n}: L_{n}^{2}(X, \mathcal{M}, \mu) \mapsto L_{n}^{2}(X, M, \mu) \\
& \left(u_{n} g_{n}\right)(x):=\sum_{j=1}^{q(n)} g_{n, j} X_{T_{n}^{-1}\left(p_{n, j}\right)}(x) \\
& u_{n} g_{n}=\sum_{k=1}^{q(n)} e^{i \theta_{n, k}} S_{n, \theta_{n, k}} g_{n} \\
& S_{n, D} g_{n}=\sum_{\theta_{n, k} \in D} S_{n, \theta_{n, k} g_{n}}
\end{aligned}
$$

Convergence of Periodic approximation

$$
\lim _{n \rightarrow \infty} \sum_{l=-k}^{k} d_{H}\left(T^{l}(A), T_{n}^{l}\left(A_{n}\right)\right)=0
$$

Spectral convergence results

$$
\begin{equation*}
\mathcal{U}^{k} g=\int_{\mathbb{S}} e^{i \theta k} \mathrm{~d} \mathcal{S}_{\theta} g=\sum_{l=1}^{N} a_{l} e^{i k \theta_{l}} \phi_{l}+\int_{\mathbb{S}} e^{i k \theta} \mathrm{~d} \mathcal{S}_{\theta}^{r} g, \quad k \in \mathbb{Z} \tag{2}
\end{equation*}
$$

(i) For some interval $D \subset \mathbb{S}$, if $g \in L^{2}(X, \mathcal{M}, \mu)$ has no nonzero modes a_{k} in (2) corresponding to eigenvalues on boundary $\partial D=\bar{D} \backslash \operatorname{int} D$, then:

$$
\lim _{n \rightarrow \infty}\left\|\mathcal{S}_{D} g-\mathcal{S}_{n, D} g_{n}\right\|=0
$$

(ii) Define:

$$
\begin{equation*}
\rho_{\alpha, n}\left(\theta ; g_{n}\right):=\frac{\alpha}{2 \pi} \sum_{j=1}^{\alpha}\left\|\mathcal{S}_{n, D_{\alpha, j}} g_{n}\right\|^{2} \chi_{D_{\alpha, j}}(\theta) \tag{11}
\end{equation*}
$$

where

$$
D_{\alpha, j}:=\left[\theta_{\alpha, j-1}, \theta_{\alpha, j}\right), \quad \theta_{\alpha, j}:=-\pi+\frac{2 \pi}{\alpha} j
$$

It follows that:

$$
\lim _{n, \alpha \rightarrow \infty} \int_{\mathbb{S}} \varphi(\theta) \rho_{\alpha, n}\left(\theta ; g_{n}\right) \mathrm{d} \theta=\int_{\mathbb{S}} \varphi(\theta) \rho(\theta ; g) \mathrm{d} \theta, \quad \text { for every } \varphi \in \mathcal{D}(\mathbb{S})
$$

Numerical method

Basic outline of numerical method

- Class of dynamical systems:

Volume preserving maps on the d-torus

- Two steps:
- 1. Construct periodic approximation.
- 2. Compute spectral projections of the periodic map.

1. Construct periodic approximation

Basic idea:

- Partition the d-torus into boxes and define grid points
- Evaluate map at grid points
- Construct neighborhood graph
- Solve bipartite matching problem
- Solution of bipartite matching is a candidate periodic discrete map.

2. Compute spectral projection

Basic idea:

- Use the Koopman operator of discrete map to approximate spectral projections.
- Discrete Koopman operator has a permutation structure.
- Find cycle decomposition of the permutation.
- Once the cycle decomposition is known, spectral projections can be computed with the FFT algorithm.

Matlab routine:

- Uses David Gleich MatlabBGL graph library to find periodic approximation.
- Code will be made public simultaneously with the papers.

Examples

Cat map

- Arnold's cat map:

$$
T\left(x_{1}, x_{2}\right)=\left(2 x_{1}+x_{2}, x_{1}+x_{2}\right) \quad \bmod 1
$$

-An example of an Anosov diffeomorphism
-Has "Lebesgue spectrum"
-The following observables give the following densities:

$$
\begin{array}{ll}
g_{1}\left(x_{1}, x_{2}\right)=e^{2 \pi i\left(2 x_{1}+x_{2}\right)} & \Rightarrow \rho\left(\theta ; g_{1}\right)=\frac{1}{2 \pi} \\
g_{2}\left(x_{1}, x_{2}\right)=e^{2 \pi i\left(2 x_{1}+x_{2}\right)}+\frac{1}{2} e^{\left(2 \pi i\left(5 x_{1}+3 x_{2}\right)\right)} & \Rightarrow \rho\left(\theta ; g_{2}\right)=\frac{1}{2 \pi}\left(\frac{5}{4}+\cos \theta\right) \\
g_{3}\left(x_{1}, x_{2}\right)=e^{2 \pi i\left(2 x_{1}+x_{2}\right)}+\frac{1}{2} e^{\left(2 \pi i\left(5 x_{1}+3 x_{2}\right)\right)}+\frac{1}{4} e^{2 \pi i\left(13 x_{1}+8 x_{2}\right)} & \Rightarrow \rho\left(\theta ; g_{3}\right)=\frac{1}{2 \pi}\left(\frac{21}{16}+\frac{10}{8} \cos \theta+\frac{1}{2} \cos 2 \theta\right)
\end{array}
$$

Cat map: some results

$$
\begin{aligned}
g_{1}\left(x_{1}, x_{2}\right) & =\exp \left(i 2 \pi\left(2 x_{1}+x_{2}\right)\right) \\
\rho\left(\theta ; g_{1}\right) & =\frac{1}{2 \pi}
\end{aligned}
$$

Cat map: some results

$$
\begin{aligned}
g_{1}\left(x_{1}, x_{2}\right) & =\exp \left(i 2 \pi\left(2 x_{1}+x_{2}\right)\right) \\
\rho\left(\theta ; g_{1}\right) & =\frac{1}{2 \pi}
\end{aligned}
$$

Cat map: some results

$$
\begin{aligned}
g_{1}\left(x_{1}, x_{2}\right) & =\exp \left(i 2 \pi\left(2 x_{1}+x_{2}\right)\right) \\
\rho\left(\theta ; g_{1}\right) & =\frac{1}{2 \pi}
\end{aligned}
$$

Cetnora!sonne resulus

$$
\begin{aligned}
g_{1}\left(x_{1}, x_{2}\right) & =\exp \left(i 2 \pi\left(2 x_{1}+x_{2}\right)\right) \\
\rho\left(\theta ; g_{1}\right) & =\frac{1}{2 \pi}
\end{aligned}
$$

$$
\mathrm{n}=\mathbf{2 0 0 0}
$$

Cat map: some results

$$
\begin{aligned}
g_{2}\left(x_{1}, x_{2}\right) & =\exp \left(i 2 \pi\left(2 x_{1}+x_{2}\right)\right)+\exp \left(i 2 \pi\left(5 x_{1}+3 x_{2}\right)\right) \\
\rho\left(\theta ; g_{2}\right) & =\frac{1}{2 \pi}\left(\frac{5}{4}+\cos \theta\right)
\end{aligned}
$$

Cat map: some results

$$
\begin{aligned}
g_{2}\left(x_{1}, x_{2}\right) & =\exp \left(i 2 \pi\left(2 x_{1}+x_{2}\right)\right)+\exp \left(i 2 \pi\left(5 x_{1}+3 x_{2}\right)\right) \\
\rho\left(\theta ; g_{2}\right) & =\frac{1}{2 \pi}\left(\frac{5}{4}+\cos \theta\right)
\end{aligned}
$$

Cat map: some results

$$
\begin{aligned}
g_{2}\left(x_{1}, x_{2}\right) & =\exp \left(i 2 \pi\left(2 x_{1}+x_{2}\right)\right)+\exp \left(i 2 \pi\left(5 x_{1}+3 x_{2}\right)\right) \\
\rho\left(\theta ; g_{2}\right) & =\frac{1}{2 \pi}\left(\frac{5}{4}+\cos \theta\right)
\end{aligned}
$$

$\mathrm{n}=1000$

Cat map: some results

$$
\begin{aligned}
g_{2}\left(x_{1}, x_{2}\right) & =\exp \left(i 2 \pi\left(2 x_{1}+x_{2}\right)\right)+\exp \left(i 2 \pi\left(5 x_{1}+3 x_{2}\right)\right) \\
\rho\left(\theta ; g_{2}\right) & =\frac{1}{2 \pi}\left(\frac{5}{4}+\cos \theta\right)
\end{aligned}
$$

Cat map: some results

$$
\begin{aligned}
& g_{3}\left(x_{1}, x_{2}\right)=\exp \left(i 2 \pi\left(2 x_{1}+x_{2}\right)\right)+\exp \left(i 2 \pi\left(5 x_{1}+3 x_{2}\right)\right)+\exp \left(i 2 \pi\left(13 x_{1}+8 x_{2}\right)\right) \\
& \rho\left(\theta ; g_{3}\right)=\frac{1}{2 \pi}\left(\frac{21}{16}+\frac{10}{8} \cos \theta+\frac{1}{2} \cos 2 \theta\right) \\
& \mathrm{n}=250
\end{aligned}
$$

Cat map: some results

$$
\begin{aligned}
& g_{3}\left(x_{1}, x_{2}\right)=\exp \left(i 2 \pi\left(2 x_{1}+x_{2}\right)\right)+\exp \left(i 2 \pi\left(5 x_{1}+3 x_{2}\right)\right)+\exp \left(i 2 \pi\left(13 x_{1}+8 x_{2}\right)\right) \\
& \rho\left(\theta ; g_{3}\right)=\frac{1}{2 \pi}\left(\frac{21}{16}+\frac{10}{8} \cos \theta+\frac{1}{2} \cos 2 \theta\right) \\
& \mathrm{n}=500
\end{aligned}
$$

Cat map: some results

$$
\begin{aligned}
& g_{3}\left(x_{1}, x_{2}\right)=\exp \left(i 2 \pi\left(2 x_{1}+x_{2}\right)\right)+\exp \left(i 2 \pi\left(5 x_{1}+3 x_{2}\right)\right)+\exp \left(i 2 \pi\left(13 x_{1}+8 x_{2}\right)\right) \\
& \rho\left(\theta ; g_{3}\right)=\frac{1}{2 \pi}\left(\frac{21}{16}+\frac{10}{8} \cos \theta+\frac{1}{2} \cos 2 \theta\right) \\
& \mathrm{n}=1000
\end{aligned}
$$

Cat map: some results

$$
\begin{aligned}
& g_{3}\left(x_{1}, x_{2}\right)=\exp \left(i 2 \pi\left(2 x_{1}+x_{2}\right)\right)+\exp \left(i 2 \pi\left(5 x_{1}+3 x_{2}\right)\right)+\exp \left(i 2 \pi\left(13 x_{1}+8 x_{2}\right)\right) \\
& \rho\left(\theta ; g_{3}\right)=\frac{1}{2 \pi}\left(\frac{21}{16}+\frac{10}{8} \cos \theta+\frac{1}{2} \cos 2 \theta\right) \\
& \mathrm{n}=2000
\end{aligned}
$$

Chirikov Standard map

- Chirikov-Taylor map:

$$
T\left(x_{1}, x_{2}\right)=\left[\begin{array}{c}
x_{1}+x_{2}+K \sin \left(2 \pi x_{1}\right) \\
x_{2}+K \sin \left(2 \pi x_{1}\right)
\end{array}\right] \quad \bmod 1
$$

- Model of a kicked rotor.
- Has mixed spectra?

Chirikov Standard map: some results

Conclusions

Conclusions

- Asymptotic convergence of the spectra is guaranteed in a weak-sense.
- Method can deal with continuous spectra.
- Method is only tractable for low dimensional maps.

Associated papers (in preparation):

- Theory: "A finite dimensional approximation of the Koopman operator with convergent spectral properties" N. Govindarajan, R Mohr, S. Chandrasekaran, I. Mezić.
- Numerical method: "A convergent numerical method for computing Koopman spectra of volume-preserving maps on the torus" N. Govindarajan, R. Mohr, S. Chandrasekaran, I. Mezić.
- Generalization to flows: "On the approximation of Koopman spectral properties of measure-preserving flows " N. Govindarajan, R. Mohr, S. Chandrasekaran, I. Mezić.

