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General outline

The problem of solving multivariate polynomial equations is a general-
ization of linear systems and univariate root finding. While classical work
mostly focused on the (noiseless) square case, our goal is to solve noisy
overdetermined systems that may only admit approximate roots. We
introduce a method that reduces the root retrieval to a tensor decom-
position problem. Central to our method is the construction of the null
space of the Macaulay matrix. However, a key challenge is the rapid in-
crease In the size of this matrix. To address this, our work explores the
matrix’s underlying structure to significantly speed up the computation
of its null space.

l. The problem

Noisy (overdetermined) polynomial systems

Solve a system of S multivariate polynomial equations in N < S variables:
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Adding noise to the equations destroys the single exact root at (1, 0)

Practical example: Multi-source localization using Friis equations, i.e.,
given noisy measured quantities P!, P, P} for s = 1,...,S, determine
receiver locations (2!, y}) and (], 4 from
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If S = 5, positions can be retrieved up to permutation ambiguity!
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The Macaulay matrix & its null space

Given a polynomial system X : {fS}SS:l, the Macaulay matrix M is defined
as the transpose of the linear map describing the polynomial multiplication
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For our example, the Macaulay matrix at degree d = 3 equals
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If d is large enough: dim null M(d) = no. of projective roots.

Roots are recovered from null space by performing an unmixing operation:
involves computing a canonical polyadic decomposition of a tensor [2]

Il. Fast null space algorithms
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A method relying on intersection of shifted null spaces (MINI algorithm)

Take advantage of the nested recursive structure:

Main computational Problem: Macaulay matrix grows quickly in size!

A low displacement rank (LDR) approach

The dimensions of the bivariate Macaulay matrix M(d) grow quadratically

w.r.t. d, but its rank under the displacement operator
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9 . X — diag {Zi,l ®IS}i:Ad+1 X — Xdiag {ZMD]}
under grows only linearly with d.
Use the GKO algorithm [1] to find the null space:
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1. Apply unitary transformations ® and W such that ®M(d)¥ =: M(d) is
Cauchy-like, i.e., its entries are of the form
Md]::®Md@~: |
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2. Let r(d) := rank M(d). Compute a rank-revealing LU (RRLU)
factorization
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Shifted null spaces and subspace intersections can be computed fast from previous steps [3].
Krylov subspace methods Comparison
Method Benefit Drawback

Main idea:
Coupled with fast mat-vecs, use a Krylov method like CG or implicitly
restarted Lanczos bidiagonalization to find the smallest right singular
vectors.

For example, the Macaulay matrix at degree 7 for the Chebyshev polyno-
mial
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Is the first 4 rows of the matrix
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Witha = |¢g ¢1 ¢2 ¢3 ¢4 0 0 0], the mat-vecs can be accelerated with fast
cosine transforms due to the decomposition

W(a) = D,,CJ diag (Q,I Sna) cls! (2)

LDR Memory efficient; reduces Does not generalize nicely to
complexity from O(d%) to many variable systems: dimin-
O(d?) for bivariate systems ishing returns!

MINI Exponential improvement for Bad with handling noise; inter-

many variables: from O(20Y) mediate null spaces can get too

to O2*V) for square degree large for overdetermined sys-

two systems tems with few roots

Beneficial if number of roots Possible slow convergence due

R is small: complexity goes to ill-conditioning of the ma-

O(d*N) to O(RNd*N logd).  trix.

Krylov

Open problem: preconditioners for Krylov method

Find a P ~ (M 'M)T, with M being a multi-level block-toeplitz matrix.
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