Spline-based separable expansions for approximation, regression and classification

Nithin Govindarajan

Nico Vervliet, Lieven De Lathauwer

IPAM Workshop I: Tensor Methods and their Applications in the Physical and Data Sciences, UCLA, United States, April 1, 2021
\qquad

What are we trying to accomplish?

Introduce a new technique for modeling functions in several variables:

- Regression tasks
- Classification tasks

Our recent submission to Frontiers:
Regression and classification with spline-based separable expansions.
N. Govindarajan, N. Vervliet, L. De Lathauwer.

The main challenge of approximating functions in high dimensions

Curse-of-dimensionality in approximation theory:
In general, to approximate a n-times differentiable function in D variables within ϵ-tolerance (measured in the uniform norm), one typically requires $M \gtrsim$ $\left(\frac{1}{\epsilon}\right)^{D / n}$ parameters

Optimal nonlinear approximation. DeVore et al., Manuscripta mathematica, 1989.
caveat:
Many high-dimensional functions in applications are inherently of "low complexity"

Focus of this talk: exploiting low-rank structures through sums of separable functions

$$
f(\boldsymbol{x})=\sum_{r=1}^{R}\left(\prod_{d=1}^{D} \phi_{r, d}\left(x_{d}\right)\right)
$$

Sums of separable functions $=$ continuous analogs of polyadic decompositions

Revisiting this problem: are there any benefits of using splines over polynomials?

Past work (e.g., Mohlenkamp \& Beylkin) mostly considered polynomials to approximate the component functions $\phi_{r, d}(\cdot)$,
why not use piece-wise polynomials a.k.a. splines?

What to expect next?

Spline basics and splines in higher dimensions: exploiting low-rank structures
Performing regression and classification
A Gauss-Newton algorithm exploiting sparsity
Numerical examples (regression)
Numerical examples (classification)
Key take-aways and future work

The knot set and B-spline basis terms

Let $\mathscr{T}=\left\{t_{i}\right\}_{i=0}^{N+M}$ denote the set of knots:

$$
a=t_{0}=\ldots=t_{N-1} \leq t_{N} \leq t_{N+1} \leq \ldots \leq t_{M+1}=\ldots=t_{M+N}=b
$$

The B-spline basis terms $\left\{B_{m, N}\right\}_{m=0}^{M}$ are defined through the recursion formula

$$
B_{m, N}(x):=\frac{x-t_{m}}{t_{m+N}-t_{m}} B_{m, N-1}(x)+\frac{t_{m+N+1}-x}{t_{m+N+1}-t_{m+1}} B_{m+1, N-1}(x),
$$

where $B_{m, 0}(x):=\left\{\begin{array}{ll}1 & x \in\left[t_{m}, t_{m+1}\right) \\ 0 & \text { otherwise }\end{array}\right.$.

The B-spline basis elements $B_{m, N}(\cdot)$ are compactly supported!

The B-spline basis elements $B_{m, N}(\cdot)$ are compactly supported!

The B-spline basis elements $B_{m, N}(\cdot)$ are compactly supported!

The B-spline basis elements $B_{m, N}(\cdot)$ are compactly supported!

The B-spline function

Any continuous function can be approximated arbitrarily well by

$$
S(x)=\left[\begin{array}{lll}
B_{0, N}(x) & \cdots & B_{M, N}(x)
\end{array}\right]\left[\begin{array}{c}
c_{0} \\
\vdots \\
c_{M}
\end{array}\right]=B_{\mathscr{T}, N}(x) \boldsymbol{c}
$$

through either increasing the knot density and order of the spline.

Taking direct tensor products of splines leads to exponential blow-up of coefficients...

$$
\hat{f}(x ; \mathcal{C})=\sum_{m_{1}=0}^{M_{1}} \cdots \sum_{m_{D}=0}^{M_{D}} c_{m_{1} \cdots m_{D}} \prod_{d=1}^{D} B_{m_{d}, N^{(d)}}^{(d)}\left(x_{d}\right)=\mathcal{C} \cdot{ }_{1} B_{d}\left(x_{1}\right) \cdots{ }_{D} B_{D}\left(x_{D}\right)
$$

Exploit low-rank structure: $\mathcal{C}\left(\Gamma_{1}, \ldots, \Gamma_{d}\right)=\llbracket \Gamma_{1}, \ldots, \Gamma_{D} \rrbracket$, to alleviate this blow-up!

$$
\hat{f}\left(x ; \Gamma_{1}, \ldots, \Gamma_{D}\right)=\mathcal{C}\left(\Gamma_{1}, \ldots, \Gamma_{D}\right) \cdot{ }_{1} B_{1}\left(x_{1}\right) \cdots{ }_{D} B_{D}\left(x_{D}\right)=\sum_{r=1}^{R} \prod_{d=1}^{D} B_{d}\left(x_{d}\right) \gamma_{r, d}
$$

Spline basics and splines in higher dimensions: exploiting low-rank structures Performing regression and classification

A Gauss-Newton algorithm exploiting sparsity
Numerical examples (regression)
Numerical examples (classification)
Key take-aways and future work

Regression is performed by minimizing the quadratic objective function

Given samples $\left\{\left(\boldsymbol{x}_{i}, y_{i}\right)\right\}_{i=1}^{\prime} \subset[0,1]^{D} \times \mathbb{R}$ from a underlying target function $f \in C\left([0,1]^{D}\right)$, we minimize:

$$
Q\left(\Gamma_{1}, \ldots, \Gamma_{D}\right):=\frac{1}{2} \sum_{i=1}^{\prime}\left(\hat{f}\left(x_{i} ; \Gamma_{1}, \ldots, \Gamma_{D}\right)-y_{i}\right)^{2} .
$$

A level-set approach to modeling a binary classification function
Binary classification function $g:[0,1]^{D} \rightarrow\{0,1\}$ can be modeled by the function

$$
g(x)= \begin{cases}0 & f(x) \leq 0 \\ 1 & f(x)>0\end{cases}
$$

Replace step function with the logistic function $\sigma_{\alpha}: t \mapsto 1 /(\exp (-\alpha t)+1)$

Replace g with

$$
g_{\alpha}(x):=\left(\sigma_{\alpha} \circ f\right)(x)=\sigma_{\alpha}(f(x))
$$

where $\alpha>0$ controls sharpness of transition.

Replace step function with the logistic function $\sigma_{\alpha}: t \mapsto 1 /(\exp (-\alpha t)+1)$

g_{α} is further replaced by the approximant

$$
\hat{g}_{\alpha}\left(x ; \Gamma_{1}, \ldots, \Gamma_{D}\right):=\sigma_{\alpha} \circ \hat{f}\left(x ; \Gamma_{1}, \ldots, \Gamma_{D}\right),
$$

Classification is performed by minimizing the Logistic objective function

Given a collection of labeled data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{\prime} \subset[0,1]^{D} \times\{0,1\}$, the performance of \hat{g}_{α} is optimized when both

$$
\prod_{y_{i}=0}\left(1-\hat{g}_{\alpha}\left(x_{i} ; \Gamma_{1}, \ldots, \Gamma_{D}\right)\right) \quad \text { and } \quad \prod_{y_{i}=1} \hat{g}_{\alpha}\left(x_{i} ; \Gamma_{1}, \ldots, \Gamma_{D}\right)
$$

is maximized as much as possible.

Classification is performed by minimizing the Logistic objective function

This is equivalent to minimizing the objective function

$$
L_{\alpha}\left(\Gamma_{1}, \ldots, \Gamma_{D}\right):=-\sum_{i=1}^{\prime} y_{i} \log \hat{g}_{\alpha}\left(x_{i} ; \Gamma_{1}, \ldots, \Gamma_{D}\right)+\left(1-y_{i}\right) \log \left(1-\hat{g}_{\alpha}\left(x_{i} ; \Gamma_{1}, \ldots, \Gamma_{D}\right)\right)
$$

Spline basics and splines in higher dimensions: exploiting low-rank structures
Performing regression and classification
A Gauss-Newton algorithm exploiting sparsity
Numerical examples (regression)
Numerical examples (classification)
Key take-aways and future work

Minimization of objective functions is effectively done with Gauss-Newton dogleg algorithm

- Exploit multi-linear structure of the objective functions, see:
- Optimization-based algorithms for tensor decompositions: Canonical polyadic decomposition, decomposition in rank- $\left(L_{r}, L_{r}, 1\right)$ terms, and a new generalization. Sorber et al., SIAM J. Optim., 2013.
- Numerical optimization-based algorithms for data fusion. Vervliet et al., Data Handling in Science and Technology, 2019.
■ Main computational burden:
evaluating gradients and Grammian-vector products.

Benefit of compactly supported B-splines:
significant speed-ups in Grammian and gradient by exploiting sparsity!

Gradient:

$$
g_{r, d}=A_{d}\left(\left(\begin{array}{c}
\underset{k=1, k \neq d}{*} \\
*
\end{array} A_{k}^{\top} \boldsymbol{\gamma}_{r, k}\right) * \boldsymbol{\eta}\right) .
$$

Grammian (of the Jacobian) vector product

$$
w_{r, d}=A_{d}\left(\left(\begin{array}{c}
D \\
k=1, k \neq d
\end{array} A_{k}^{\top} \gamma_{r, k}\right) * \boldsymbol{\xi} *\left(\sum_{\tilde{d}=1}^{D} \sum_{\tilde{r}=1}^{R}\left(\begin{array}{c}
D \\
* \\
k=1, k \neq d
\end{array} A_{k}^{\top} \gamma_{\tilde{r}, k}\right) * A_{\tilde{d}}^{\top} z_{\tilde{r}, \tilde{d}}\right)\right) .
$$

Benefit of compactly supported B-splines:

 significant speed-ups in Grammian and gradient by exploiting sparsity!

Spline basis

If the order of the B-spline is kept low:

$$
\mathcal{O}(D I M R) \quad \rightarrow \quad \mathcal{O}(D I R) \text { flops }
$$

Benefit of compactly supported B-splines:
significant speed-ups in Grammian and gradient by exploiting sparsity!

average required computation time to pass through one cycle of the GN algorithm.

$$
N=4, R=3, I=1000
$$

Spline basics and splines in higher dimensions: exploiting low-rank structures
Performing regression and classification
A Gauss-Newton algorithm exploiting sparsity
Numerical examples (regression)
Numerical examples (classification)
Key take-aways and future work

A $R=3$ separable function

Consider the following example

$$
f(\boldsymbol{x})=\underbrace{\left|x_{1}\right|\left|x_{2}\right|}_{\text {non-smooth term }}+\sin \left(2 \pi x_{1}\right) \cos \left(2 \pi x_{2}\right)+x_{1}^{2} x_{2}, \quad \boldsymbol{x} \in[-1,1] \times[-1,1] .
$$

As expected... an $R=3$ is sufficient for a good approximation

Absolute error

(Knots are uniformly distributed on the approximation domain)

As expected... an $R=3$ is sufficient for a good approximation

Absolute error

(Knots are uniformly distributed on the approximation domain)

As expected... an $R=3$ is sufficient for a good approximation

Absolute error

(Knots are uniformly distributed on the approximation domain)

As expected... an $R=3$ is sufficient for a good approximation

Absolute error

(Knots are uniformly distributed on the approximation domain)

Unlike for splines, Runge's phenomenon can adversely affect quality of approximation

No of separable terms $R=3$.
(Knots are uniformly distributed on the approximation domain)

Taming Runge's phenomenon with splines: keep order low and increase knots

Runge's phenomenon can adversely contribute to the overfitting problem

NASA dataset from the UCI machine learning repository:

- independent variables:
- frequency,
- angle of attack,
- chord length,
- free-stream velocity,
- suction-side displacement thickness.
- dependent variable: self-noise generated by airfoil.
- randomly split data into a training (1202 samples) and a test (301 samples) sets.

An $R=5$ separable function is sufficient to model the NASA dataset

Spline basics and splines in higher dimensions: exploiting low-rank structures Performing regression and classification

A Gauss-Newton algorithm exploiting sparsity
Numerical examples (regression)
Numerical examples (classification)
Key take-aways and future work

The separable rank can be increased to account for complexity of the classification sets

Consider the labeled dataset:

The separable rank can be increased to account for complexity of the classification sets

The separable rank can be increased to account for complexity of the classification sets

The separable rank can be increased to account for complexity of the classification sets

The separable rank can be increased to account for complexity of the classification sets

The separable rank can be increased to account for complexity of the classification sets

Our method compared with well-established techniques for classification

CPU time for training grows more moderately with dataset size

no. of training samples

Spline basics and splines in higher dimensions: exploiting low-rank structures Performing regression and classification

A Gauss-Newton algorithm exploiting sparsity
Numerical examples (regression)
Numerical examples (classification)
Key take-aways and future work

Key take-aways and future work

Important take-aways:
■ With B-splines, sparsity can be exploited to further accelerate GN algorithm

- Runge phenomenon effects are easily suppressed by keeping order of the spline low

■ Low-rank structures do appear in practice!

- A new promising technique for (binary) classification

Future work:
■ Extend to other decompositions, e.g., Hierarchical Tucker, Tensor Train,

- multi-class classification,
- knot optimization

Spline-based separable expansions for approximation, regression and classification

Nithin Govindarajan

Nico Vervliet, Lieven De Lathauwer

IPAM Workshop I: Tensor Methods and their Applications in the Physical and Data Sciences, UCLA, United States, April 1, 2021
\qquad

