
Spline-based separable expansions for

approximation, regression and classification

Nithin Govindarajan

Nico Vervliet, Lieven De Lathauwer

IPAM Workshop I: Tensor Methods and their Applications in the Physical and Data
Sciences, UCLA, United States, April 1, 2021



What are we trying to accomplish?

Introduce a new technique for modeling functions in several variables:

Regression tasks

Classification tasks

Our recent submission to Frontiers:
Regression and classification with spline-based separable expansions.

N. Govindarajan, N. Vervliet, L. De Lathauwer.
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The main challenge of approximating functions in high dimensions

Curse-of-dimensionality in approximation theory:
In general, to approximate a n-times differentiable function in D variables
within ε-tolerance (measured in the uniform norm), one typically requires M &
(1ε )D/n parameters

Optimal nonlinear approximation. DeVore et al., Manuscripta mathematica, 1989.

caveat:
Many high-dimensional functions in applications are inherently of “low com-
plexity”
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Focus of this talk: exploiting low-rank structures through sums of separable functions

f (x) =
R∑

r=1

(
D∏

d=1

φr ,d(xd)

)

f =

φ1,3

φ1,1

φ1,2
+ · · ·+

φR,3

φR,1

φR,2

Sums of separable functions = continuous analogs of polyadic decompositions
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Revisiting this problem: are there any benefits of using splines over polynomials?

Past work (e.g., Mohlenkamp & Beylkin) mostly considered polynomials to
approximate the component functions φr ,d(·),

why not use piece-wise polynomials a.k.a. splines?
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What to expect next?

Spline basics and splines in higher dimensions: exploiting low-rank structures

Performing regression and classification

A Gauss–Newton algorithm exploiting sparsity

Numerical examples (regression)

Numerical examples (classification)

Key take-aways and future work
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The knot set and B-spline basis terms

Let T = {ti}N+M
i=0 denote the set of knots:

a = t0 = . . . = tN−1 ≤ tN ≤ tN+1 ≤ . . . ≤ tM+1 = . . . = tM+N = b.

The B-spline basis terms {Bm,N}Mm=0 are defined through the recursion formula

Bm,N(x) :=
x−tm

tm+N−tm
Bm,N−1(x) +

tm+N+1 − x

tm+N+1 − tm+1
Bm+1,N−1(x),

where Bm,0(x) :=

{
1 x ∈ [tm, tm+1)

0 otherwise
.
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The B-spline basis elements Bm,N(·) are compactly supported!
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N=2, M=14

Bm,N(x) = 0, x ∈ (−∞, tm) ∪ [tm+N+1,∞).
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The B-spline basis elements Bm,N(·) are compactly supported!
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The B-spline basis elements Bm,N(·) are compactly supported!
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The B-spline basis elements Bm,N(·) are compactly supported!

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

N=5, M=14

Bm,N(x) = 0, x ∈ (−∞, tm) ∪ [tm+N+1,∞).

8



The B-spline function

Any continuous function can be approximated arbitrarily well by

S(x) =
[
B0,N(x) · · · BM,N(x)

]  c0
...
cM

 = BT ,N(x)c .

through either increasing the knot density and order of the spline.
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Taking direct tensor products of splines leads to exponential blow-up of coefficients...

f̂ (x ; C) =

M1∑
m1=0

· · ·
MD∑

mD=0

cm1···mD

D∏
d=1

B
(d)

md ,N(d)(xd) = C ·1 Bd(x1) · · · ·D BD(xD)

C

∏D
d=1(Md + 1) parameters
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Exploit low-rank structure: C(Γ1, . . . , Γd) = JΓ1, . . . , ΓDK, to alleviate this blow-up!

f̂ (x ; Γ1, . . . , ΓD) = C(Γ1, . . . , ΓD) ·1 B1(x1) · · · ·D BD(xD) =
R∑

r=1

D∏
d=1

Bd(xd)γr ,d

C =

γ1,3

γ1,1

γ1,2

+ · · ·+

γR,3

γR,1

γR,2

∏D
d=1(Md + 1) parameters R(

∑D
d=1Md + 1) parameters
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Spline basics and splines in higher dimensions: exploiting low-rank structures

Performing regression and classification

A Gauss–Newton algorithm exploiting sparsity

Numerical examples (regression)

Numerical examples (classification)

Key take-aways and future work
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Regression is performed by minimizing the quadratic objective function

Given samples {(xi , yi )}Ii=1 ⊂ [0, 1]D × R from a underlying target function
f ∈ C ([0, 1]D), we minimize:

Q(Γ1, . . . , ΓD) :=
1

2

I∑
i=1

(
f̂ (xi ; Γ1, . . . , ΓD)− yi

)2
.
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A level-set approach to modeling a binary classification function

Binary classification function g : [0, 1]D → {0, 1} can be modeled by the function

g(x) =

{
0 f (x) ≤ 0

1 f (x) > 0

(copyright wikimedia)
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Replace step function with the logistic function σα : t 7→ 1/(exp(−αt) + 1)

Replace g with
gα(x) := (σα ◦ f )(x) = σα(f (x)),

where α > 0 controls sharpness of transition.
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Replace step function with the logistic function σα : t 7→ 1/(exp(−αt) + 1)

gα is further replaced by the approximant

ĝα(x ; Γ1, . . . , ΓD) := σα ◦ f̂ (x ; Γ1, . . . , ΓD),

15



Classification is performed by minimizing the Logistic objective function

Given a collection of labeled data {(xi , yi )}Ii=1 ⊂ [0, 1]D × {0, 1}, the performance of
ĝα is optimized when both∏

yi=0

(1− ĝα(xi ; Γ1, . . . , ΓD)) and
∏
yi=1

ĝα(xi ; Γ1, . . . , ΓD)

is maximized as much as possible.
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Classification is performed by minimizing the Logistic objective function

This is equivalent to minimizing the objective function

Lα(Γ1, . . . , ΓD) := −
I∑

i=1

yi log ĝα(xi ; Γ1, . . . , ΓD) + (1− yi ) log (1− ĝα(xi ; Γ1, . . . , ΓD)) .
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Spline basics and splines in higher dimensions: exploiting low-rank structures

Performing regression and classification

A Gauss–Newton algorithm exploiting sparsity

Numerical examples (regression)

Numerical examples (classification)

Key take-aways and future work
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Minimization of objective functions is effectively done with Gauss-Newton dogleg
algorithm

Exploit multi-linear structure of the objective functions, see:

Optimization-based algorithms for tensor decompositions: Canonical polyadic
decomposition, decomposition in rank-(Lr , Lr , 1) terms, and a new generalization.
Sorber et al., SIAM J. Optim., 2013.
Numerical optimization-based algorithms for data fusion. Vervliet et al., Data
Handling in Science and Technology, 2019.

Main computational burden:

evaluating gradients and Grammian-vector products.
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Benefit of compactly supported B-splines:
significant speed-ups in Grammian and gradient by exploiting sparsity!

Gradient:

gr ,d = Ad

((
D∗

k=1,k 6=d
AT
kγr ,k

)
∗η
)
.

Grammian (of the Jacobian) vector product

wr ,d = Ad

( D∗
k=1,k 6=d

AT
kγr ,k

)
∗ ξ∗

 D∑
d̃=1

R∑
r̃=1

(
D∗

k=1,k 6=d
AT
kγ r̃ ,k

)
∗AT

d̃
zr̃ ,d̃

 .
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Benefit of compactly supported B-splines:
significant speed-ups in Grammian and gradient by exploiting sparsity!

If the order of the B-spline is kept low:

O (DIMR) → O (DIR) flops
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Benefit of compactly supported B-splines:
significant speed-ups in Grammian and gradient by exploiting sparsity!
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Spline basics and splines in higher dimensions: exploiting low-rank structures

Performing regression and classification

A Gauss–Newton algorithm exploiting sparsity

Numerical examples (regression)

Numerical examples (classification)

Key take-aways and future work

20



A R = 3 separable function

Consider the following example

f (x) = |x1||x2|︸ ︷︷ ︸
non-smooth term

+ sin(2πx1) cos(2πx2) + x21x2, x ∈ [−1, 1]× [−1, 1].
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As expected... an R = 3 is sufficient for a good approximation
R = 1
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As expected... an R = 3 is sufficient for a good approximation
R = 2
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As expected... an R = 3 is sufficient for a good approximation
R = 3
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As expected... an R = 3 is sufficient for a good approximation
R = 4
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Unlike for splines, Runge’s phenomenon can adversely affect quality of approximation
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Taming Runge’s phenomenon with splines: keep order low and increase knots
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Low-rank structures in real life datasets - an example

NASA dataset from the UCI machine learning repository:

independent variables:

frequency,
angle of attack,
chord length,
free-stream velocity,
suction-side displacement thickness.

dependent variable: self-noise generated by airfoil.

randomly split data into a training (1202 samples) and a test (301 samples) sets.
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An R = 5 separable function is sufficient to model the NASA dataset
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Spline basics and splines in higher dimensions: exploiting low-rank structures

Performing regression and classification

A Gauss–Newton algorithm exploiting sparsity

Numerical examples (regression)

Numerical examples (classification)

Key take-aways and future work
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The separable rank can be increased to account for complexity of the classification sets

Consider the labeled dataset:
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The separable rank can be increased to account for complexity of the classification sets
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The separable rank can be increased to account for complexity of the classification sets
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The separable rank can be increased to account for complexity of the classification sets
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The separable rank can be increased to account for complexity of the classification sets
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The separable rank can be increased to account for complexity of the classification sets

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
R = 5

28



Our method compared with well-established techniques for classification
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CPU time for training grows more moderately with dataset size
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Spline basics and splines in higher dimensions: exploiting low-rank structures

Performing regression and classification

A Gauss–Newton algorithm exploiting sparsity

Numerical examples (regression)

Numerical examples (classification)

Key take-aways and future work
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Key take-aways and future work

Important take-aways:

With B-splines, sparsity can be exploited to further accelerate GN algorithm

Runge phenomenon effects are easily suppressed by keeping order of the spline low

Low-rank structures do appear in practice!

A new promising technique for (binary) classification

Future work:

Extend to other decompositions, e.g., Hierarchical Tucker, Tensor Train,

multi-class classification,

knot optimization
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