# Efficient Computation of Macaulay Matrix Null Spaces Through Exploiting Shift-Invariant Structures

Nithin Govindarajan

with Raphaël Widdershoven, Shiv Chandrasekaran, and Lieven De Lathauwer

June 15<sup>th</sup> 2023



#### Macaulay matrices and their null spaces: a computational challenge

The low displacement property of Macaulay matrices

The fast algorithm

Analysis of complexity

Numerical experiments

Generalizations

#### The problem that we wish to solve

Let  $S \ge N$ , and consider system of the multivariate polynomials

$$\Sigma: \begin{cases} p_1 = p_1(x_1, x_2, \dots, x_N) \\ \vdots \\ p_S = p_S(x_1, x_2, \dots, x_N) \end{cases},$$
(1)

with  $\deg(p_s) = d_s$ .

#### Goal:

Find all roots  $\left\{ \left(t^{(r)}, x_1^{(r)}, \ldots, x_N^{(r)}\right) \right\}_{r=1}^R$  of the *homogenized* system  $\Sigma_h$ .

NOTE: In practice, we may be only interested in the affine roots...

The Macaulay matrix M(d) and its right null space

The rows of M(d) span the set of polynomial combinations

$$\left\{\sum_{s=1}^{S}h_s\cdot p_s:\quad \deg(h_s)=d-d_s\right\}.$$

Null space computation is a major computational bottleneck in many algorithms!



(Vanderstukken and De Lathauwer 2021)

Macaulay matrices and their null spaces: a computational challenge

#### The low displacement property of Macaulay matrices

The fast algorithm

Analysis of complexity

Numerical experiments

Generalizations

Focus: (Possibly overdetermined) bivariate polynomial systems

For simplicity of exposition, we assume  $deg(p_s) = d_{\Sigma}$ , i.e.,

Σ

$$f: \begin{cases} p_1(x, y) = \sum_{i=0}^{d_{\Sigma}} \sum_{j=0}^{d_{\Sigma}-i} c_{1ij} x^i y^j = 0 \\ \vdots \\ p_S(x, y) = \sum_{i=0}^{d_{\Sigma}} \sum_{j=0}^{d_{\Sigma}-i} c_{Sij} x^i y^j = 0 \end{cases}$$

#### In lex ordering Macaulay is almost Toeplitz block-(block-)Toeplitz!



The Macaulay matrix for the general bivariate case

Let 
$$\Delta d := d - d_{\Sigma}$$
. Then,  

$$M(d) := \begin{bmatrix} M_{0,0} & M_{1,0} & \cdots & M_{d_{\Sigma},0} & & & \\ & M_{0,1} & M_{1,1} & \cdots & M_{d_{\Sigma},1} & & \\ & & \ddots & \ddots & & \ddots & \\ & & & M_{0,\Delta d} & M_{1,\Delta d} & \cdots & M_{d_{\Sigma},\Delta d} \end{bmatrix} \in \mathbb{C}^{\frac{S}{2}(\Delta d+1)(\Delta d+2) \times \frac{1}{2}(d+1)(d+2)}$$

with

$$\mathbf{M}_{i,j} := \begin{bmatrix} \boldsymbol{c}_{0i} & \boldsymbol{c}_{1i} & \cdots & \boldsymbol{c}_{(d_{\Sigma}-i)i} \\ & \boldsymbol{c}_{0i} & \boldsymbol{c}_{1i} & \cdots & \boldsymbol{c}_{(d_{\Sigma}-i)i} \\ & \ddots & \ddots & & \ddots \\ & & \boldsymbol{c}_{0i} & \boldsymbol{c}_{1i} & \cdots & \boldsymbol{c}_{(d_{\Sigma}-i)i} \end{bmatrix} \in \mathbb{C}^{S(\Delta d+1-j) \times (d+1-i-j)}.$$

#### Intermezzo: The generalized shift matrix

Let

$$\mathbf{Z}_{\boldsymbol{p},\varphi} := \begin{bmatrix} & & & \varphi \\ 1 & & & \\ & \ddots & & \\ & & 1 \end{bmatrix} \in \mathbb{C}^{\boldsymbol{p} \times \boldsymbol{p}}.$$

## Eigen-decomposition of $Z_{p,\varphi}$

Denote  $\omega_p := \exp(-2\pi\iota/p)$  and  $F_p \in \mathbb{C}^{p imes p}$  the (unitary) DFT matrix. Then

$$\mathbf{Z}_{\boldsymbol{\rho},\varphi} = (\mathbf{D}_{\boldsymbol{\rho},\varphi} \boldsymbol{F}_{\boldsymbol{\rho}})(\varphi^{1/\boldsymbol{\rho}} \Omega_{\boldsymbol{\rho}}) (\mathbf{D}_{\boldsymbol{\rho},\varphi} \mathbf{F}_{\boldsymbol{\rho}})^{-1},$$

where  $D_{\rho,\varphi} := \operatorname{diag}(1, \varphi^{-1/\rho}, \dots, \varphi^{-(\rho-1)/\rho}), \ \Omega_{\rho} := \operatorname{diag}(1, \overline{\omega}_{\rho}, \dots, \overline{\omega}_{\rho}^{\rho-1}),$ 

#### Toeplitz matrices and their low "displacement rank" properties

Consider the so-called displacement equation

.

$$Z_{4,1} \begin{bmatrix} t_0 & t_1 & t_2 & t_3 \\ t_{-1} & t_0 & t_1 & t_2 \\ t_{-2} & t_{-1} & t_0 & t_1 \\ t_{-3} & t_{-2} & t_{-1} & t_0 \end{bmatrix} - \begin{bmatrix} t_0 & t_1 & t_2 & t_3 \\ t_{-1} & t_0 & t_1 & t_2 \\ t_{-2} & t_{-1} & t_0 & t_1 \\ t_{-3} & t_{-2} & t_{-1} & t_0 \end{bmatrix} Z_{4,\phi}$$

$$=$$

$$\begin{bmatrix} t_{-3} - t_1 & t_{-2} - t_2 & t_{-1} - t_3 & t_0 - \varphi t_0 \\ 0 & 0 & 0 & t_3 - \varphi t_{-1} \\ 0 & 0 & 0 & t_2 - \varphi t_{-2} \\ 0 & 0 & 0 & t_1 - \varphi t_{-3} \end{bmatrix}$$
rank is only two!

NOTE:  $\varphi \in \mathbb{C}$  is chosen such that the operator  $\mathscr{D} : T \mapsto Z_{4,1}T - TZ_{4,\varphi}$  remains invertible!

#### The key observation that shall allow for a faster algorithm!

Consider the displacement operator

$$\mathscr{D} \left\{ \mathrm{M}(d) \right\} = egin{bmatrix} \mathrm{Z}_{d+1,1} \otimes \mathrm{I}_{\mathcal{S}} & & \ & \ddots & \ & \mathrm{Z}_{1,1} \otimes \mathrm{I}_{\mathcal{S}} \end{bmatrix} \mathrm{M}(d) - \mathrm{M}(d) egin{bmatrix} \mathrm{Z}_{d+1,\varphi_{d+1}} & & \ & \ddots & \ & & \mathrm{Z}_{1,\varphi_1} \end{bmatrix}$$

M(d) has relative "low" displacement rank too! Dimensions of  $M(d) \in \mathbb{C}^{\frac{S}{2}(\Delta d+1)(\Delta d+2) \times \frac{1}{2}(d+1)(d+2)}$  grow quadratically w.r.t. d, but rank  $\mathscr{D} \{M(d)\} \leq S(\Delta d+1) = S(d+1-d_{\Sigma})$ . grows only *linearly* with d.

Macaulay matrices and their null spaces: a computational challenge

The low displacement property of Macaulay matrices

The fast algorithm

Analysis of complexity

Numerical experiments

Generalizations

#### An overview of the fast algorithm



Both steps can be done fast!

Apply unitary transformations  $\Phi$  and  $\Psi$  such that  $\Phi M(d)\Psi =: \hat{M}(d)$  is Cauchy-like, i.e., its entries are of the form

$$\left[\hat{\mathrm{M}}(d)
ight]_{ij} := \left[\Phi\mathrm{M}(d)\Psi
ight]_{ij} = rac{oldsymbol{u}_i^*oldsymbol{v}_j}{\mu_i - 
u_j}, \qquad oldsymbol{u}_i, oldsymbol{v}_j \in \mathbb{C}^{\mathcal{S}(\Delta d+1)}$$

## Step 1 *done fast*: use displacement rank theory!

Best explained through the simpler Toeplitz case...

$$Z_{n,1}T_n - T_n Z_{n,\varphi} = UV^*$$

$$\downarrow$$

$$(F_n\Omega_n F_n^*) T_n - T_n \left( (D_{n,\varphi}F_n)(\varphi^{1/n}\Omega_n)(D_{n,\varphi}F_n)^{-1} \right) = UV^*$$

$$\downarrow$$

$$\Omega_n F_n^* T_n D_{n,\varphi} F_n - F_n^* T_n D_{n,\varphi} F_n \left( \varphi^{1/n}\Omega_n \right) = (F_n^* U)F_n^* D_{n,\varphi}^* V^*$$

$$\downarrow$$

$$diag(\mu)C - Cdiag(\nu) = RS^* =: G$$

$$\downarrow$$
Displacement equation for *Cauchy-like* matrix!

# Step 2: compute a rank-revealing LU factorization of $\hat{M}(d)$

Let  $r(d) := \operatorname{rank} M(d)$ . Compute a rank-revealing LU (RRLU) factorization

$$\begin{split} \Pi_{1}\hat{\mathrm{M}}(d)\Pi_{2} &= \begin{bmatrix} \mathrm{I}_{r(d)} \\ \hat{\mathrm{M}}_{21}\hat{\mathrm{M}}_{11}^{-1} & \mathrm{I}_{d_{\Sigma}^{2}} \end{bmatrix} \begin{bmatrix} \hat{\mathrm{M}}_{11} \\ & \hat{\mathrm{M}}_{22} - \hat{\mathrm{M}}_{21}\hat{\mathrm{M}}_{11}^{-1}\hat{\mathrm{M}}_{12} \end{bmatrix} \begin{bmatrix} \mathrm{I}_{r(d)} & \hat{\mathrm{M}}_{11}^{-1}\hat{\mathrm{M}}_{12} \\ & \mathrm{I}_{d_{\Sigma}^{2}} \end{bmatrix} \\ &\approx \begin{bmatrix} \hat{\mathrm{M}}_{11} \\ \hat{\mathrm{M}}_{21} \end{bmatrix} \begin{bmatrix} \mathrm{I}_{r(d)} & \hat{\mathrm{M}}_{11}^{-1}\hat{\mathrm{M}}_{12} \end{bmatrix} \end{split}$$

#### Expression for the null space N(d)

$$N(d) = \Psi \Pi_2 \begin{bmatrix} \tilde{N} \\ I_{d_{\Sigma}^2} \end{bmatrix}, \qquad \tilde{N} := -\hat{M}_{11}^{-1} \hat{M}_{12}.$$

NOTE: Gaussian elimination on Macaulay matrix  $\equiv$  polynomial reductions for e.g., Grobner Basis reductions (Eder and Faugère 2017)

Step 2 done fast: Apply Schur algorithm on Cauchy-like matrix (Heinig 1995)

$$\begin{split} \text{diag}(\boldsymbol{\mu}) \begin{bmatrix} A & G^* \\ F & B \end{bmatrix} - \begin{bmatrix} A & G^* \\ F & B \end{bmatrix} \text{diag}(\boldsymbol{\nu}) = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} \begin{bmatrix} S_1 \\ S_2 \end{bmatrix}^* \\ \downarrow \\ \text{diag}(\boldsymbol{\mu}) \begin{bmatrix} A \\ B - FA^{-1}G^* \end{bmatrix} - \begin{bmatrix} A \\ B - FA^{-1}G^* \end{bmatrix} \text{diag}(\boldsymbol{\nu}) = \begin{bmatrix} R_1 \\ \tilde{R}_2 \end{bmatrix} \begin{bmatrix} S_1 \\ \tilde{S}_2 \end{bmatrix}^*, \\ \text{where } \tilde{R}_2 = R_2 - FA^{-1}R_1 \text{ and } \tilde{S}_2 = S_2 - G(A^*)^{-1}S_1, \end{split}$$

## Main idea of Schur algorithm

Perform Gauss elimination on the generators instead of the dense matrix itself!

# Step 2 *done fast: approximate* total pivoting through QR-decomposition of generators Recall

$$\operatorname{\mathsf{diag}}(\mu)\operatorname{C}-\operatorname{C}\operatorname{\mathsf{diag}}(
u)=\operatorname{RS}^*=:\operatorname{G}\in\mathbb{C}^{n imes n}.$$

## (Gu 1998, Lemma 3.1)

Let  $j_{max}$  denote the column with largest 2-norm in G. Then,

$$\max_{1 \le i \le n} |c_{ij_{\max}}| \ge \frac{1}{K\sqrt{n}} \max_{1 \le i,j \le n} |c_{ij}|,$$

with  $K := \max_{1 \le i,j,i,j \le n} |\mu_i - \nu_j| / |\mu_i - \nu_j|$ .

Full QR-decomposition of R expensive!  $\rightarrow$  Use fancy QR updating techniques!

Macaulay matrices and their null spaces: a computational challenge

The low displacement property of Macaulay matrices

The fast algorithm

Analysis of complexity

Numerical experiments

Generalizations

We are able to reduce the flop complexity from  $\mathcal{O}(d_{\Sigma}^{6})$  to  $\mathcal{O}(d_{\Sigma}^{5})!$ 

Assumptions:

- $\Sigma$  has a consistent set of equations  $\rightarrow$  number of roots  $= d_{\Sigma}^2$ ,
- $S \ll d_{\Sigma}$ .

A quick complexity overview for each step

- Step 1:  $\mathcal{O}(S \cdot d_{\Sigma} \cdot \Delta d \cdot d \log d)$
- Step 2:  $\mathcal{O}(r(d) \cdot S^2 d^3)$

 $d \leq 2d_{\Sigma} - 2$  to find a null space containing all system roots  $\downarrow^{5}_{\mathcal{O}(d_{\Sigma}^{5})}$ 

NOTE: We can overcome the restriction  $S \ll d_\Sigma$  by random sampling of the rows!

Macaulay matrices and their null spaces: a computational challenge

The low displacement property of Macaulay matrices

The fast algorithm

Analysis of complexity

Numerical experiments

Generalizations

Let  $\mathrm{Q} \in \mathbb{C}^{n(d) imes d_{\Sigma}^2}$  be an orthonormal basis for col  $\mathrm{N}(d)$ , then define

$$\epsilon := \frac{\|\mathbf{M}(d)\mathbf{Q}\|_2}{\|\mathbf{M}(d)\|_2} \ge \frac{\sigma_{r(d)+1}}{\sigma_1} =: \epsilon_{\min}$$

## Algorithm stability: error grows linearly with problem size

Median error over 100 runs for square systems with different methods and degrees.

|                                 |          |          | $d_{\Sigma}$ |          |          |
|---------------------------------|----------|----------|--------------|----------|----------|
|                                 | 2        | 4        | 8            | 16       | 32       |
| SVD on $\mathrm{M}(d)$          | 2.23e-16 | 3.75e-16 | 5.70e-16     | 7.94e-16 | 9.51e-16 |
| SVD on $\hat{\mathrm{M}}(d)$    | 2.57e-16 | 4.77e-16 | 7.54e-16     | 9.97e-16 | 1.15e-15 |
| GECP on $M(d)$                  | 1.40e-16 | 3.11e-16 | 8.33e-16     | 1.02e-14 | 1.40e-13 |
| $GECP$ on $\hat{\mathrm{M}}(d)$ | 2.08e-16 | 4.65e-16 | 1.03e-15     | 9.73e-15 | 1.21e-13 |
| $GECP \text{ on } \mathscr{C}$  | 4.35e-16 | 1.51e-15 | 1.35e-14     | 1.72e-13 | 2.81e-12 |
| $GEAP \text{ on } \mathscr{C}$  | 4.21e-16 | 3.63e-15 | 3.88e-14     | 3.19e-13 | 4.48e-12 |

#### Sources of error:

- switching to LU instead of an SVD
- $\blacksquare$  working with the compact Cauchy representation  ${\mathscr C}$
- switching to approximate pivoting ← Surprisingly not so bad!

#### Our experiments indicate that the flop complexity is indeed $O(d_{\Sigma}^5)$

The measurements are the median of an adapted number of runs after warmup.



Macaulay matrices and their null spaces: a computational challenge

The low displacement property of Macaulay matrices

The fast algorithm

Analysis of complexity

Numerical experiments

Generalizations

## The algorithm generalizes to Chebyshev systems!

$$\Sigma: \begin{cases} p_1(x, y) := \sum_{i=0}^{d_{\Sigma}} \sum_{j=0}^{d_{\Sigma}-i} b_{1ij} T_i(x) T_j(y) = 0 \\ \vdots \\ p_S(x, y) := \sum_{i=0}^{d_{\Sigma}} \sum_{j=0}^{d_{\Sigma}-i} b_{Sij} T_i(x) T_j(y) = 0 \end{cases}$$

Key ideas to arrive to an  $\mathcal{O}(d_{\Sigma}^5)$  algoritm:

- Toeplitz-plus-Hankel instead of just Toeplitz.
- Apply same techniques but with a *modified* displacement equation.

The algorithm does not nicely extend for general N-dimensional systems

- $\blacksquare$  Displacement rank theory does not generalize nicely to higher dimensions  $\circledast$
- Diminishing returns:  $\mathcal{O}(d^{3N})$  to  $\mathcal{O}(d^{3N-1})$
- Open problem: how to exploit multi-level Toeplitz structures?

Macaulay matrices and their null spaces: a computational challenge

The low displacement property of Macaulay matrices

The fast algorithm

Analysis of complexity

Numerical experiments

Generalizations

#### Conclusions

- An asymptotically *faster* algorithm for Macaulay null space computation.
- Generalizes to Chebyshev systems
- Generic *n*-dimensional systems still a challenge! (assume additional structure?)

To learn more, see our pre-print:

Govindarajan, Nithin et al. (2023). "A fast algorithm for computing Macaulay nullspaces of bivariate polynomial systems". In: Technical Report 23-16, ESAT-STADIUS, KU Leuven (Leuven, Belgium).

## References I

- Eder, Christian and Jean-Charles Faugère (2017). "A survey on signature-based algorithms for computing Gröbner bases". In: *J. Symb. Comput.* 80, pp. 719–784.
- Gu, Ming (1998). "Stable and Efficient Algorithms for Structured Systems of Linear Equations". In: SIAM J. Matrix Anal. Appl. 19.2, pp. 279–306.
- Heinig, Georg (1995). "Inversion of Generalized Cauchy Matrices and other Classes of Structured Matrices". In: *Linear Algebra for Signal Processing*. Ed. by
   A. Bojanczyk and G. Cybenko. Vol. 69. The IMA Volumes in Mathematics and its Applications. New York, NY, USA: Springer.
- Vanderstukken, Jeroen and Lieven De Lathauwer (2021). "Systems of Polynomial Equations, Higher-Order Rensor Decompositions and Multidimensional Harmonic Retrieval: A Unifying Framework. Part I: The Canonical Polyadic Decomposition". eng. In: *SIAM J. Matrix Anal. Appl.* 42.2, pp. 883–912.

## References II

Vanderstukken, Jeroen et al. (2021). "Systems of Polynomial Equations, Higher-Order Tensor Decompositions, and Multidimensional Harmonic Retrieval: A Unifying Framework. Part II: The Block Term Decomposition". In: SIAM J. Matrix Anal. Appl. 42.2, pp. 913–953.