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Question: what is the algebraic structure of the inverse of a tridiagonal matrix?

A =


a1 b1
c1 a2 b2

c2 a3 b3
c3 a4 b4

c4 a5



Adjacency graph G(A):
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Answer: quasi-separable structure

A−1 =


d1 p1r1q2 p1r1r2q3 p1r1r2r3q4 p1r1r2r3r4q5

u2t1v1 d2 p2r2q3 p2r2r3q4 p2r2r3r4q5
u3t1v1 u3t2v2 d3 p3r3q4 p3r3r4q5

u4t3t2t1v1 u4t3t2v2 u4t3v3 d4 p4q5
u5t4t3t2t1v1 u5t4t3t2v2 u5t4t3v3 u5t4v4 d5



algebraic structure: All off-diagonal blocks are unit rank...
representation: Quasi-separable matrices (there are others)
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Answer: quasi-separable structure

A−1 =


d1 p1r1q2 p1r1r2q3 p1r1r2r3q4 p1r1r2r3r4q5

u2t1v1 d2 p2r2q3 p2r2r3q4 p2r2r3r4q5
u3t1v1 u3t2v2 d3 p3r3q4 p3r3r4q5

u4t3t2t1v1 u4t3t2v2 u4t3v3 d4 p4q5
u5t4t3t2t1v1 u5t4t3t2v2 u5t4t3v3 u5t4v4 d5



algebraic structure: All off-diagonal blocks are unit rank...
representation: Quasi-separable matrices (there are others)

no. of parameters in the quasi-separable representation of A−1

≈
no. of nonzero entries in A
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Continuous case: tridiagonal matrix A is a discretization of operator A := w(x) d2

dx2

A simple boundary value ODE problem:

w(x)
d2q(x)

dx2
− λq(x) = 1, q(0) = 0, q(1) = 0, w(x) = 1

⇔

Integral formulation:

q(x)− λ

∫ 1

0
K (x , y)q(y)dy = f (x)

with semi-separable kernel K (x , y) =

{
x(y − 1), 0 ≤ x ≤ y

y(x − 1) y ≤ x ≤ 1
, f (x) = 1

2x(x − 1)
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Continuous case: tridiagonal matrix A is a discretization of operator A := w(x) d2

dx2

Discretization (e.g. using Nyström’s method) of∫ 1

0
(δ(x − y)− λK (x , y)) q(y)dy = f (x)

yields the linear system:
d1 p1q2 p1q3 p1q4 p1q5
u2v1 d2 p2q3 p2q4 p2q5
u3v1 u3v2 d3 p3q4 p3q5
u4v1 u4v2 u4v3 d4 p4q5
u5v1 u5v2 u5v3 u5v4 d5



q1
q2
q3
q4
q5

 =


b1
b2
b3
b4
b5
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Quasi-separable matrices are closed under inversion!

Closure property: The inverse of a quasi-separable matrix is again quasi-separable.

Tridiagonal matrices are a special case of quasi-separable.

Note: the inverse of a quasi-separable is generally not tridiagonal.

Addition & products preserve “quasi-separable structures” (more later!)

Quasi-separable matrices

Tridiagonal matrices
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Focus of this talk: what can we say for more general sparse matrices?

Given a sparse matrix A ∈ Cn×n with adjacency graph G(A):

1. What are the algebraic structures preserved by A−1?

2. Does there exist suitable representation A−1 satisfying the closure property?

1. graph-induced rank-structure (GIRS)

2. Rank-structured matrices induced by dynamical systems on graphs:

Acyclic adjacency graphs: a complete answer
Non-acyclic adjacency graphs: a partial answer
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Rank-structured matrices in practice: boundary element method for BVPs

Ω

∂ΩExterior Helmholtz with Dirichlet boundary conditions

∇2u(x) + k2u(x) = 0, x ∈ R2 \ Ω
u(x) = g(x), x ∈ ∂Ω

u(x) ∼ e ikr√
r
, r → ∞

Reformulate to Fredholm integral equation on ∂Ω
↓

Fast multipole method (FMM): exploit low-rank structures in far-field

Rokhlin, Vladimir. ”Rapid solution of integral equations of classical potential theory.” Journal of
computational physics 60, no. 2 (1985): 187-207.
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Rank-structured matrices in practice: Schur complements in PDE discretizations

Low off-diagonal rank structure in Sk = Ak − CkS
−1
k−1Bk , S0 = A0


A0 B1

C1 A1
. . .

. . .
. . . Bn−1

Cn−1 An−1

 =



∗ ∗

∗ ∗
. . .

. . .
. . . ∗
∗ ∗

∗
∗

. . .

∗

∗
∗

. . .

∗

∗ ∗

∗ ∗
. . .

. . .
. . . ∗
∗ ∗

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

∗
∗

. . .

∗

∗
∗

. . .

∗

∗ ∗

∗ ∗
. . .

. . .
. . . ∗
∗ ∗



Chandrasekaran, Shiv, Patrick Dewilde, Ming Gu, and Naveen Somasunderam. ”On the numerical rank
of the off-diagonal blocks of Schur complements of discretized elliptic PDEs.” SIAM Journal on Matrix

Analysis and Applications 31, no. 5 (2010): 2261-2290.
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Rank-structured matrices in practice: optimal control of spatially distributed systems

Vehicle platoon

Vibrating string: ∂2v(x ,t)
∂t2

= k(x)∂
2v(x ,t)
∂x2

+ b(x)u(x , t)

Low-rank structure in state-space models:

ẋ = Ax + Bu
y = Cx +Du

Communication constraints on feedback u = Fx!

Rice, Justin K., and Michel Verhaegen. ”Distributed control: A sequentially semi-separable approach
for spatially heterogeneous linear systems.” IEEE Transactions on Automatic Control 54, no. 6 (2009):

1270-1283.

Bamieh, Bassam, Fernando Paganini, and Munther A. Dahleh. ”Distributed control of spatially
invariant systems.” IEEE Transactions on automatic control 47, no. 7 (2002): 1091-1107.
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Many frameworks for efficient linear algebra with rank-structured matrices

All have their benefits and special use cases:

FMM matrices (Rokhlin & Greengard)

Hierarchichally semi-separable (HSS) matrices (Chandrasekaran & Gu)

Sequentially Semi-Separable (SSS) matrices (Chandrasekaran, Dewilde, van der
Veen)

HODLR

H-matrices and H2-matrices (Hackbusch)

Quasi-separable matrices (Eidelman, Gohberg)

Semi-separable matrices (Van Barel, Vandebril, Mastronardi)

Our interest:
Rank-structured matrices with closure property → direct solvers & preconditioners
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SSS matrices: input-output map of mixed linear time-variant (LTV) system

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

state-space dynamics:

gk = Wkgk+1 +V⊤
k xk , gn = V⊤

n xn

hk = Rkhk−1 +Q⊤
k xk , h1 = Q⊤

1 x1

yk = Ukgk+1 + Pkhk−1 +Dkxk .
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SSS matrices: input-output map of mixed linear time-variant (LTV) system

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

Resulting input-output relation:
D1 U1V

⊤
2 U1W2V

⊤
3 U1W2W3V

⊤
4 U1W2W3W4V

⊤
5

P2Q
⊤
1 D2 U2V

⊤
3 U2W3V

⊤
4 U2W3W4V

⊤
5

P3R2Q
⊤
1 P3Q

⊤
2 D3 U3V

⊤
4 U3W4V

⊤
5

P4R3R2Q
⊤
1 P4R3Q

⊤
2 P4Q

⊤
3 D4 U4V

⊤
5

P5R4R3R2Q
⊤
1 P5R4R3Q

⊤
2 P5R4Q

⊤
3 P5Q

⊤
4 D5



x1

x2

x3

x4

x5

 =


y1

y2

y3

y4

y5
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The ranks of the so-called Hankel blocks dictate the state dimension sizes

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

state dimension of h1 ⇔ rankH1
A11 A12 A13 A14 A15

A21 A22 A23 A24 A25

A31 A32 A33 A34 A35

A41 A42 A43 A44 A45

A51 A52 A53 A54 A55



x1

x2

x3

x4

x5

 =


y1

y2

y3

y4

y5


Notice how the cuts correspond to the Hankel blocks
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The ranks of the so-called Hankel blocks dictate the state dimension sizes

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5
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x2

x3

x4
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 =


y1

y2

y3

y4

y5
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The ranks of the so-called Hankel blocks dictate the state dimension sizes

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

state dimension of h3 ⇔ rankH3
A11 A12 A13 A14 A15

A21 A22 A23 A24 A25

A31 A32 A33 A34 A35

A41 A42 A43 A44 A45
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x1

x2

x3

x4

x5

 =


y1

y2

y3

y4

y5


Notice how the cuts correspond to the Hankel blocks
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The ranks of the so-called Hankel blocks dictate the state dimension sizes

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

state dimension of h4 ⇔ rankH4
A11 A12 A13 A14 A15

A21 A22 A23 A24 A25

A31 A32 A33 A34 A35

A41 A42 A43 A44 A45

A51 A52 A53 A54 A55



x1

x2

x3

x4

x5

 =


y1

y2

y3

y4

y5


Notice how the cuts correspond to the Hankel blocks
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It is quite easy to write down the SSS representation for the tridiagonal matrix!


a1 b1 0 0 0
c1 a2 b2 0 0

0 c2 a3 b3 0
0 0 c3 a4 b4
0 0 0 c4 a5



x1
x2
x3
x4
x5

 =


y1
y2
y3
y4
y5



The w ’s and r ’s are zero for the mixed LTV system:

gk = 0 · gk+1 + 1 · xk , gn = 1 · xn
hk = 0 · hk−1 + 1 · xk , h1 = 1 · x1
yk = bk · gk+1 + ck · hk−1 + akxk .
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Square partitions: Hankel block ranks are preserved during inversion

Lemma

Let

[
B11 B12

B21 B22

]
=

[
A11 A12

A21 A22

]−1

∈ F(n1+n2)×(n1+n2) with square A11 ∈ Fn1×n1 . Then,

rankB21 = rankA21, rankB12 = rankA12.

The inverse of the tridiagonal is also described by a mixed LTV system:

gk = wk · gk+1 + vk · xk ,
hk = rk · hk−1 + qk · xk ,
yk = bk · gk+1 + ck · hk−1 + akxk .

but w ’s and r ’s will no longer zero!
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Algebraic properties of SSS: closure under sums, products, and inverses!

Inverse of an SSS matrix (with square partitions) is again an SSS matrix of the
same state dimensions.

Sums of SSS matrices are SSS, but with a doubling of the state dimensions.

Products of SSS matrices are also SSS with a doubling of the state dimensions.
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From mat-vec to solving Ax = b: matrix representation of state-space equations



I −W2 −V T
2

I −W3 −V T
3

I −W4 −V T
4

I −V T
5

I −QT
1

−R2 I −QT
2

−R3 I −QT
3

−R4 I −QT
4

U1 D1

U2 P2 D2

U3 P3 D3

U4 P4 D4

P5 D5





g2
g3
g4
g5
h1
h2
h3
h4
x1
x2
x3
x4
x5



=



0
0
0
0

0
0
0
0

b1
b2
b3
b4
b5
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From mat-vec to solving Ax = b: re-ordering yields a fast solver

Block-sparsity pattern matches the underlying graph!

I −QT
1

D1 U1

I −V T
2 −W2

−R2 I −QT
2

P2 D2 U2

I −V T
3 −W3

−R3 I −QT
3

P3 D3 U3

I −V T
4 −W4

−R4 I −QT
4

P4 D4 U4

I −V T
5

P5 D5





h1
x1
g2
h2
x2
g3
h3
x3
g4
h4
x4
g5
x5



=



0
b1
0
0
b2
0
0
b3
0
0
b4
0
b5


Recall: Line graphs have a perfect elimination order!
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SSS matrices not suitable for 2D Laplacians: Hankel ranks grow with O(
√
n)



∗ ∗

∗ ∗
. . .

. . .
. . . ∗
∗ ∗

∗
∗

. . .

∗

∗
∗

. . .

∗

∗ ∗

∗ ∗
. . .

. . .
. . . ∗
∗ ∗

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

∗
∗

. . .

∗

∗
∗

. . .

∗

∗ ∗

∗ ∗
. . .

. . .
. . . ∗
∗ ∗



with
√
n-by-

√
n block partitioning → approx. n1.5 parameters
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Graph-partitioned matrices: associate a directed graph with a block-partitioned matrix

y (0,0)

x (0,0)

y (0,1)

x (0,1)

y (0,2)

x (0,2)

y (0,3)

x (0,3)

y (1,0)

x (1,0)

y (1,1)

x (1,1)

y (1,2)

x (1,2)

y (1,3)

x (1,3)

y (2,0)

x (2,0)

y (2,1)

x (2,1)

y (2,2)

x (2,2)

y (2,3)

x (2,3)

y (3,0)

x (3,0)

y (3,1)

x (3,1)

y (3,2)

x (3,2)

y (3,3)

x (3,3)

Associate G = (V,E) with a
block-partitioned matrix

y i =
∑
j∈V

T{i , j}x j , i ∈ V.
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Hankel blocks induced by graph cuts

y (0,0)

x (0,0)

y (0,1)

x (0,1)

y (0,2)

x (0,2)

y (0,3)

x (0,3)

y (1,0)

x (1,0)

y (1,1)

x (1,1)

y (1,2)

x (1,2)

y (1,3)

x (1,3)

y (2,0)

x (2,0)

y (2,1)

x (2,1)

y (2,2)

x (2,2)

y (2,3)

x (2,3)

y (3,0)

x (3,0)

y (3,1)

x (3,1)

y (3,2)

x (3,2)

y (3,3)

x (3,3)

Let A ⊂ V and Ā = V \ A so that

Π1TΠ2 =

[
T{A,A} T{A, Ā}
T{Ā,A} T{Ā, Ā}

]
.

Call T{Ā,A} as the Hankel block
induced by A.

This generalizes the Hankel blocks from earlier!
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GIRS: a full characterization of all low-rank structures in (T,G)

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(1, 0)

(1, 1)

(1, 2)

(1, 3)

(2, 0)

(2, 1)

(2, 2)

(2, 3)

(3, 0)

(3, 1)

(3, 2)

(3, 3)
A

Ā

Definition (GIRS property)

(T,G) satisfies the graph-induced
rank structure for a constant
c ≥ 0 if ∀A ⊂ V,

rankT{Ā,A} ≤ c · E(A),

where E(A) the number of border
edges.
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The GIRS property is an invariant under inversion

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(1, 0)

(1, 1)

(1, 2)

(1, 3)

(2, 0)

(2, 1)

(2, 2)

(2, 3)

(3, 0)

(3, 1)

(3, 2)

(3, 3)
A

Ā

Theorem (GIRS property)

If (T,G) satisfies the
graph-induced rank structure for a
constant c ≥ 0, then so does
(T−1,G).

Proof.

Recall the lemma from
earlier...
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The 2D-Laplacian satisfies the GIRS property for c = 1 if G is the adjacency graph

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(1, 0)

(1, 1)

(1, 2)

(1, 3)

(2, 0)

(2, 1)

(2, 2)

(2, 3)

(3, 0)

(3, 1)

(3, 2)

(3, 3)



∗ ∗

∗ ∗
. . .

. . .
. . . ∗
∗ ∗

∗
∗

. . .

∗

∗
∗

. . .

∗

∗ ∗

∗ ∗
. . .

. . .
. . . ∗
∗ ∗

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

∗
∗

. . .

∗

∗
∗

. . .

∗

∗ ∗

∗ ∗
. . .

. . .
. . . ∗
∗ ∗



In fact, all sparse matrices are GIRS with c = 1 w.r.t. their adjacency graph...
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GIRS representations: run “LTV systems” on arbitrary graphs

Associate with every edge (i , j) ∈ E the state vector h(i ,j) ∈ Fρ(i,j) .

i

j1

j2

j3

j4

“State-space” dynamics:


h(i ,j1)
...

h(i ,jp)

y i

 =


Ai

j1,j1
· · · Ai

j1,jp
Bi
j1

...
. . .

...
...

Ai
jp ,j1

· · · Ai
jp ,jp

Bi
jp

Ci
j1

· · · Ci
jp

Di



h(j1,i)
...

h(jp ,i)

x i



36



GIRS representations generalize SSS matrices

1 2 3
. . .

n − 2 n − 1 n

Si =

 0 Ai
i+1,i−1 Bi

i+1

Ai
i−1,i+1 0 Bi

i−1

Ci
i+1 Ci

i−1 Di



S1 =

[
0 Bi

i+1

Ci
i+1 Di

]
Sn =

[
0 Bi

i−1

Ci
i−1 Di

]

Line graph: diagonal edge-to-edge operators can be set to zero without
loss-of-generality!

⇓
Decouples dynamics in upstream & downstream flow!
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GIRS representation allow for linear parametrizations of 2D Laplacians

Edge-to-edge operators again zero (similar to tridiagonal matrices):

S(i ,j) =

(i+1,j) (i−1,j) (i ,j+1) (i ,j−1) x(i,j)

(i+1,j+1) 0 0 0 0 ∗
(i−1,j+1) 0 0 0 0 ∗
(i+1,j−1) 0 0 0 0 ∗
(i−1,j−1) 0 0 0 0 ∗

y(i,j) ∗ ∗ ∗ ∗ ∗




Using a scalar partitioning → approx. 52 · n parameters
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For general GIRS representation, Gauss elimination is needed for mat-vec operation!

h(i ,j) −
∑

w∈N (i)

Ai
j ,wh(w ,i) − Bi

jx i = 0, (i , j) ∈ E

∑
i∈N (j)

Cj
ih(i ,j) +Djx i = y j , j ∈ V.

↓[
I−A B
C D

] [
h
x

]
=

[
0
y

]
↓

Solve (I−A)h = −Bx to find h first!

One needs to be cautious that I−A is not singular!
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GIRS representations admit fast solvers through the sparse embedding trick!

j

i1
i2

i3
j4

h(i ,j) −
∑

w∈N (i)

Ai
j ,wh(w ,i) − Bi

jx i = 0, (i , j) ∈ E

∑
i∈N (j)

Cj
ih(i ,j) +Djx i = y j , j ∈ V.

↓

Group adjoining variables:
θj = (h(i1,j), . . . ,h(ip ,j), x j) and γj = (0, . . . , 0, y j)

↓

Block-sparsity pattern of Ξθ = γ satisfies
Ξij = 0 if (i , j) /∈ E.

Conditions for a fast solver:

1. state dimensions ρ(i,j) are small,

2. degrees of the nodes are small,

3. G is a good elimination order.

40



Example: 2-by-3 mesh



A1
2,2 A1

2,4 B1
2

A1
4,2 A1

4,4 B1
4

C1
2 C1

4 D1

−I 0 0 0
0 0 0 0
0 0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
−I 0 0
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0
0 0 0
0 0 0

−I 0 0
0 0 0
0 0 0
0 0 0

A2
1,1 A2

1,3 A2
1,5 B2

1

A2
3,1 A2

3,3 A2
3,5 B2

3

A2
5,1 A2

5,3 A2
5,5 B2

5

C2
1 C2

3 C2
5 D2

0 0 0
−I 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0

0 0 0 0
0 0 0 0
−I 0 0 0
0 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 −I 0 0
0 0 0 0
0 0 0 0

A3
2,2 A3

2,6 B3
2

A3
6,2 A3

6,6 B3
6

C3
2 C3

6 D3

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
−I 0 0
0 0 0

0 −I 0
0 0 0
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0
0 0 0
0 0 0

A4
1,1 A4

1,5 B4
2

A4
5,1 A4

5,5 B4
5

C4
1 C4

5 D4

0 0 0 0
0 −I 0 0
0 0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0

0 0 −I 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 −I 0
0 0 0
0 0 0

A5
2,2 A5

2,4 A5
2,6 B5

1

A5
4,2 A5

4,4 A5
4,6 B5

3

A5
6,2 A5

6,4 A5
6,6 B5

5

C5
2 C5

4 C5
6 D5

0 0 0
0 0 0
0 −I 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0 −I 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0 0
0 0 −I 0
0 0 0 0

A6
3,3 A6

3,5 B6
3

A6
5,3 A6

5,5 B6
5

C6
3 C6

5 D6





h(2,1)

h(4,1)

x1

h(1,2)

h(3,2)

h(5,2)

x2

h(2,3)

h(6,3)

x3

h(1,4)

h(5,4)

x4

h(2,5)

h(4,5)

h(6,5)

x5

h(3,6)

h(5,6)

x6



=



0
0
y1

0
0
0
y2

0
0
y3

0
0
y4

0
0
0
y5

0
0
y6
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GIRS representations (generically) satisfy the closure property[
I−A B
C D

] [
h
x

]
=

[
0
y

]
↓[

I− (A− BD−1C) BD−1

D−1C D−1

] [
h
y

]
=

[
0
x

]
↓

Si =


Ai

j1,j1
− Bi

j1
inv(Di )Ci

j1
· · · Ai

j1,jp
− Bi

j1
inv(Di )Ci

jp
Bi
j1
inv(Di )

...
. . .

...
...

Ai
jp ,j1

− Bi
jp
inv(Di )Ci

j1
· · · Ai

jp ,jp
− Bi

jp
inv(Di )Ci

jp
Bi
jp
inv(Di )

inv(Di )Ci
j1

· · · inv(Di )Ci
jp

inv(Di )


Also, addition and product have nice formulas
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SSS inverse and GIRS representation inverse: a subtle difference

1 2 3
. . .

n − 2 n − 1 n

The formula in the previous slide gives:

Si =

 −Bi
i+1inv(D

i )Ci
i+1 Ai

i+1,i−1 − Bi
i+1inv(D

i )Ci
i−1 Bi

i+1inv(D
i )

Ai
i−1,i+1 − Bi

i−1inv(D
i )Ci

i+1 −Bi
i−1inv(D

i )Ci
i−1 Bi

i−1inv(D
i )

inv(Di )Ci
i+1 inv(Di )Ci

i−1 inv(Di )


SSS theory guarantees more! A realization of form:

Si =

 0 Ai
i+1,i−1 Bi

i+1

Ai
i−1,i+1 0 Bi

i−1

Ci
i+1 Ci

i−1 Di


The latter requires no Gauss elimination for mat-vec!
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GIRS representations satisfy the GIRS property by construction

Theorem

A GIRS representation with rank-profile {ρe}e∈E of a graph-partitioned matrix (T,G)
satisfies the GIRS-property for

c = max
e∈E

ρe .

Proof.

A proof of this theorem was given in a talk in CAM23 at Selva di Fasano by Shiv
Chandrasekaran.
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SSS matrices: the result can be extended in the other as well.

i j

A one-to-one relationship between Hankel block ranks and state dimensions:

ρ(i ,j) = rankH(i ,j) := rankT{Ā,A}

Stronger result: Implication is in both directions:

ρ(i ,j) < c ⇔ T is GIRS-c
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Can the implication be in both directions in general?

Conjecture

A graph-partitioned matrix (T,G) is GIRS-c if, and only if, there exists GIRS
representation for (T,G) with ρe < c for all e ∈ E.

Small GIRS constant implies compact GIRS representation!

This conjecture is intimately tied to the construction/realization problem!
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Overview

The problem: what are the low-rank properties of inverses of sparse matrices?

Motivation: shortcomings of existing rank-structured representations in applications

A potential framework: GIRS matrices and their representations

GIRS representations on acyclic graphs: tree quasi-separable matrices

Conclusions & future work
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A partial verification of the GIRS conjecture

Acyclic graphs: tree interpretation

chordal structure → “fast” solvers through elimination of leaf nodes

Theorem

The GIRS conjecture holds for acyclic graphs, i.e., graphs with no cycles.
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Proving GIRS conjecture: a special tree quasi-separable (TQS) realization always exists

Node k with parent j and children i1, . . . , ip:

k Sk =


0 · · · Ak

i1,ip
Ak

i1,j
Bk
i1

...
. . .

...
...

...
Ak

ip ,i1
· · · 0 Ak

ip ,j
Bk
ip

Ak
j ,ii

· · · Ak
j ,ip

0 Bk
j

Ck
i1

· · · Ck
ip

Ck
j Dk



(k, j)

(k, i1) (k, ip)

. . .

Tree graph: Diagonal edge-to-edge operators are set to zero!
⇓

Decouples dynamics into an explicit flow starting from the leaves!
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Proving GIRS conjecture: a special tree quasi-separable (TQS) realization always exists

Entries Node k with parent j and children i1, . . . , ip:

1
5 7

2 6
4

3

T{3, 2} = C3
6A

6
3,7A

7
6,5A

5
7,2B

2
5

Tree graph: Diagonal edge-to-edge operators are set to zero!
⇓

Decouples dynamics into an explicit flow starting from the leaves!
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SSS generalization: Hankel block ranks specify dimensions of minimal TQS representation

j

i

ρ(i ,j) = rankH(i ,j) := rankT{Ā,A}

Construction from a finite number of low-rank factorizations:

Govindarajan, N., Chandrasekaran, S., Dewilde, P. (2024). Tree quasi-separable matrices: a
simultaneous generalization of sequentially and hierarchically semi-separable representations. arXiv

preprint.
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TQS is a strict generalization of SSS and HSS

TQS reduces to SSS if G is the line graph.

TQS reduces to HSS if G is a binary tree with empty non-leaf nodes.

In all other cases, it is neither SSS nor HSS.

Many of the algorithms for SSS and HSS generalize to TQS:

development of more flexible and powerful code possible!
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Overview

The problem: what are the low-rank properties of inverses of sparse matrices?

Motivation: shortcomings of existing rank-structured representations in applications

A potential framework: GIRS matrices and their representations

GIRS representations on acyclic graphs: tree quasi-separable matrices

Conclusions & future work
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The state of affairs: acyclic graph-partitioned matrices

general GIRS repr.

TQS

HSS SSS

GIRS conjecture: solved and true!

Construction: TQS realizations is possible in finite
number of low-rank factorizations.

Special realizations: A special TQS realization always
exists that decouples dynamics into an explicit flow.

Algebraic properties: closed under sums, products, and
inverses.

Fast solvers: chordal structure ensures good elimination
order.
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The state of affairs: general graph-partitioned matrices

general GIRS repr.

TQS

HSS SSS

GIRS conjecture: yet to be answered!

Construction: no general algorithm for constructing
realizations.

Special realizations: not known when realizations exist
that simplify the dynamics.

Algebraic properties: closure under sums, products, and
inverses.

Fast solvers: contingent on existence of good
elimination orders.
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Future work

1. Develop formulas, factorization algorithms, software for TQS, e.g.:

Inner-outer
(Pseudo-)inverse
LU / Cholesky
ULV

2. Applications of TQS, e.g.:

Exterior Helmholtz problems on “branchy” domains
Distributed control on acyclic graphs

3. Theoretical work: proving GIRS conjecture for cycle graphs?

4. Construction of more general GIRS representations using optimization-based
techniques?
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