# Rank-structured matrices induced by dynamical systems on graphs

Nithin Govindarajan

December 4, 2024

# Overview

The problem: what are the low-rank properties of inverses of sparse matrices? Motivation: shortcomings of existing rank-structured representations in applications A potential framework: GIRS matrices and their representations GIRS representations on acyclic graphs: tree quasi-separable matrices Conclusions & future work

# Overview

#### The problem: what are the low-rank properties of inverses of sparse matrices?

Motivation: shortcomings of existing rank-structured representations in applications

A potential framework: GIRS matrices and their representations

GIRS representations on acyclic graphs: tree quasi-separable matrices

Conclusions & future work

Question: what is the algebraic structure of the inverse of a tridiagonal matrix?

$$\mathbf{A} = \begin{bmatrix} a_1 & b_1 & & \\ c_1 & a_2 & b_2 & & \\ & c_2 & a_3 & b_3 & \\ & & c_3 & a_4 & b_4 \\ & & & & c_4 & a_5 \end{bmatrix}$$







**algebraic structure**: All off-diagonal blocks are unit rank... **representation**: *Quasi-separable matrices* (there are others)



**algebraic structure**: All off-diagonal blocks are unit rank... **representation**: *Quasi-separable matrices* (there are others)



**algebraic structure**: All off-diagonal blocks are unit rank... **representation**: *Quasi-separable matrices* (there are others)



**algebraic structure**: All off-diagonal blocks are unit rank... **representation**: *Quasi-separable matrices* (there are others)

no. of parameters in the quasi-separable representation of  ${\rm A}^{-1}$   $\approx$  no. of nonzero entries in  ${\rm A}$ 

Continuous case: tridiagonal matrix A is a discretization of operator  $\mathcal{A} := w(x) \frac{d^2}{dx^2}$ 

A simple boundary value ODE problem:

$$w(x)\frac{d^2q(x)}{dx^2} - \lambda q(x) = 1, \quad q(0) = 0, \quad q(1) = 0, \quad w(x) = 1$$
$$\Leftrightarrow$$

Integral formulation:

$$q(x) - \lambda \int_0^1 \mathcal{K}(x, y) q(y) dy = f(x)$$
  
with semi-separable kernel  $\mathcal{K}(x, y) = \begin{cases} x(y-1), & 0 \le x \le y \\ y(x-1), & y \le x \le 1 \end{cases}, \quad f(x) = \frac{1}{2}x(x-1)$ 

Continuous case: tridiagonal matrix A is a discretization of operator  $\mathcal{A} := w(x) \frac{d^2}{dx^2}$ 

Discretization (e.g. using Nyström's method) of

$$\int_0^1 \left( \delta(x-y) - \lambda K(x,y) \right) q(y) \mathrm{d}y = f(x)$$

yields the linear system:

| $\int d_1$ | $p_1q_2$ | $p_1q_3$ | $p_1q_4$     | $p_1q_5$     | ] | $\left\lceil q_{1} \right\rceil$ |   | $\begin{bmatrix} b_1 \end{bmatrix}$ |
|------------|----------|----------|--------------|--------------|---|----------------------------------|---|-------------------------------------|
| $u_2v_1$   | $d_2$    | $p_2q_3$ | $p_2q_4$     | $p_2q_5$     |   | $ q_2 $                          |   | <i>b</i> <sub>2</sub>               |
| $u_3v_1$   | $u_3v_2$ | $d_3$    | $p_{3}q_{4}$ | $p_{3}q_{5}$ |   | <i>q</i> 3                       | = | <i>b</i> <sub>3</sub>               |
| $u_4v_1$   | $u_4v_2$ | $u_4v_3$ | $d_4$        | $p_4q_5$     |   | $q_4$                            |   | $b_4$                               |
| $u_5v_1$   | $u_5v_2$ | $u_5v_3$ | $u_5v_4$     | $d_5$        |   | $\lfloor q_5 \rfloor$            |   | $\lfloor b_5 \rfloor$               |

# Quasi-separable matrices are closed under inversion!

- <u>Closure property</u>: The inverse of a quasi-separable matrix is *again* quasi-separable.
- Tridiagonal matrices are a *special case* of quasi-separable.
- Note: the inverse of a quasi-separable is generally *not* tridiagonal.
- Addition & products preserve "quasi-separable structures" (more later!)



Focus of this talk: what can we say for more general sparse matrices?

Given a sparse matrix  $A \in \mathbb{C}^{n \times n}$  with adjacency graph  $\mathbb{G}(A)$ :

- 1. What are the algebraic structures preserved by  $A^{-1}$ ?
- 2. Does there exist suitable representation  $A^{-1}$  satisfying the closure property?

- 1. graph-induced rank-structure (GIRS)
- 2. Rank-structured matrices induced by dynamical systems on graphs:
  - Acyclic adjacency graphs: a *complete* answer
  - Non-acyclic adjacency graphs: a partial answer

The problem: what are the low-rank properties of inverses of sparse matrices?

Motivation: shortcomings of existing rank-structured representations in applications

A potential framework: GIRS matrices and their representations

GIRS representations on acyclic graphs: tree quasi-separable matrices

Conclusions & future work

Rank-structured matrices in practice: boundary element method for BVPs

Exterior Helmholtz with Dirichlet boundary conditions

$$egin{aligned} 
abla^2 u(\mathbf{x}) + k^2 u(\mathbf{x}) &= 0, \quad \mathbf{x} \in \mathbb{R}^2 \setminus \Omega \ u(\mathbf{x}) &= g(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega \end{aligned}$$



Reformulate to Fredholm integral equation on  $\partial \Omega$  $\downarrow$ Fast multipole method (FMM): exploit low-rank structures in far-field

Rokhlin, Vladimir. "Rapid solution of integral equations of classical potential theory." Journal of computational physics 60, no. 2 (1985): 187-207.

#### Rank-structured matrices in practice: Schur complements in PDE discretizations

Low off-diagonal rank structure in  $S_k = A_k - C_k S_{k-1}^{-1} B_k$ ,  $S_0 = A_0$ 



Chandrasekaran, Shiv, Patrick Dewilde, Ming Gu, and Naveen Somasunderam. "On the numerical rank of the off-diagonal blocks of Schur complements of discretized elliptic PDEs." SIAM Journal on Matrix Analysis and Applications 31, no. 5 (2010): 2261-2290. Rank-structured matrices in practice: optimal control of spatially distributed systems





Vehicle platoon

Communication constraints on feedback  $\boldsymbol{u} = F\boldsymbol{x}!$ 

Rice, Justin K., and Michel Verhaegen. "Distributed control: A sequentially semi-separable approach for spatially heterogeneous linear systems." IEEE Transactions on Automatic Control 54, no. 6 (2009): 1270-1283.

Bamieh, Bassam, Fernando Paganini, and Munther A. Dahleh. "Distributed control of spatially invariant systems." IEEE Transactions on automatic control 47, no. 7 (2002): 1091-1107.

Many frameworks for efficient linear algebra with rank-structured matrices

All have their benefits and special use cases:

- FMM matrices (Rokhlin & Greengard)
- Hierarchichally semi-separable (HSS) matrices (Chandrasekaran & Gu)
- Sequentially Semi-Separable (SSS) matrices (Chandrasekaran, Dewilde, van der Veen)
- HODLR
- *H*-matrices and *H*<sup>2</sup>-matrices (Hackbusch)
- Quasi-separable matrices (Eidelman, Gohberg)
- Semi-separable matrices (Van Barel, Vandebril, Mastronardi)

# Our interest:

Rank-structured matrices with closure property  $\rightarrow$  direct solvers & preconditioners

# SSS matrices: input-output map of mixed linear time-variant (LTV) system



state-space dynamics:

$$\begin{aligned} \boldsymbol{g}_{k} &= \boldsymbol{W}_{k}\boldsymbol{g}_{k+1} + \boldsymbol{V}_{k}^{\top}\boldsymbol{x}_{k}, \quad \boldsymbol{g}_{n} = \boldsymbol{V}_{n}^{\top}\boldsymbol{x}_{n} \\ \boldsymbol{h}_{k} &= \boldsymbol{R}_{k}\boldsymbol{h}_{k-1} + \boldsymbol{Q}_{k}^{\top}\boldsymbol{x}_{k}, \quad \boldsymbol{h}_{1} = \boldsymbol{Q}_{1}^{\top}\boldsymbol{x}_{1} \\ \boldsymbol{y}_{k} &= \boldsymbol{U}_{k}\boldsymbol{g}_{k+1} + \boldsymbol{P}_{k}\boldsymbol{h}_{k-1} + \boldsymbol{D}_{k}\boldsymbol{x}_{k}. \end{aligned}$$

SSS matrices: input-output map of mixed linear time-variant (LTV) system



Resulting input-output relation:





state dimension of  $h_1 \Leftrightarrow \operatorname{rank} \operatorname{H}_1$ 

| $-A_{11}$       | $A_{12}$ | $A_{13}$          | $A_{14}$          | A <sub>15</sub>   | $oldsymbol{x}_1$      |   | $[\boldsymbol{y}_1]$  |  |
|-----------------|----------|-------------------|-------------------|-------------------|-----------------------|---|-----------------------|--|
| $A_{21}$        | $A_{22}$ | $A_{23}$          | $A_{24}$          | $A_{25}$          | <b>x</b> <sub>2</sub> |   | <b>y</b> <sub>2</sub> |  |
| $A_{31}$        | $A_{32}$ | $A_{33}$          | $\mathrm{A}_{34}$ | $A_{35}$          | <b>x</b> <sub>3</sub> | = | <b>y</b> <sub>3</sub> |  |
| $A_{41}$        | $A_{42}$ | $\mathrm{A}_{43}$ | $A_{44}$          | $A_{45}$          | <b>x</b> <sub>4</sub> |   | <b>y</b> <sub>4</sub> |  |
| A <sub>51</sub> | $A_{52}$ | ${\rm A}_{53}$    | $\mathrm{A}_{54}$ | A <sub>55</sub> _ | <b>x</b> 5            |   | <b>y</b> <sub>5</sub> |  |



state dimension of  $h_2 \Leftrightarrow \operatorname{rank} \operatorname{H}_2$ 

| ſ | $-A_{11}$       | $A_{12}$        | A <sub>13</sub> | $A_{14}$ | A <sub>15</sub> - |  | $\mathbf{x}_1$        |   | $\left[ \boldsymbol{y}_{1} \right]$ |  |
|---|-----------------|-----------------|-----------------|----------|-------------------|--|-----------------------|---|-------------------------------------|--|
|   | $A_{21}$        | $A_{22}$        | A <sub>23</sub> | $A_{24}$ | $A_{25}$          |  | <b>x</b> <sub>2</sub> |   | <b>y</b> <sub>2</sub>               |  |
|   | $A_{31}$        | A <sub>32</sub> | A <sub>33</sub> | $A_{34}$ | A <sub>35</sub>   |  | <b>x</b> 3            | = | <b>y</b> <sub>3</sub>               |  |
|   | $A_{41}$        | $A_{42}$        | A43             | $A_{44}$ | $A_{45}$          |  | <b>x</b> 4            |   | <b>y</b> <sub>4</sub>               |  |
| l | A <sub>51</sub> | $A_{52}$        | A <sub>53</sub> | $A_{54}$ | A <sub>55</sub>   |  | <b>x</b> 5            |   | <b>y</b> 5                          |  |



state dimension of  $h_3 \Leftrightarrow \operatorname{rank} \operatorname{H}_3$ 

| $-A_{11}$       | $A_{12}$ | $A_{13}$ | $A_{14}$ | A <sub>15</sub> | <b>x</b> <sub>1</sub> |   | $[\mathbf{y}_1]$      |
|-----------------|----------|----------|----------|-----------------|-----------------------|---|-----------------------|
| $A_{21}$        | $A_{22}$ | $A_{23}$ | $A_{24}$ | $A_{25}$        | <b>x</b> <sub>2</sub> |   | <b>y</b> <sub>2</sub> |
| $A_{31}$        | $A_{32}$ | $A_{33}$ | $A_{34}$ | $A_{35}$        | <b>x</b> 3            | = | <b>y</b> <sub>3</sub> |
| $A_{41}$        | $A_{42}$ | $A_{43}$ | A44      | A45             | <b>x</b> <sub>4</sub> |   | <b>y</b> <sub>4</sub> |
| A <sub>51</sub> | $A_{52}$ | $A_{53}$ | $A_{54}$ | A <sub>55</sub> | <b>x</b> <sub>5</sub> |   | <b>y</b> 5            |



state dimension of  $h_4 \Leftrightarrow \operatorname{rank} \operatorname{H}_4$ 

| ſ | $-A_{11}$       | $A_{12}$ | $A_{13}$          | $A_{14}$ | A <sub>15</sub> | <b>x</b> <sub>1</sub> |   | $\begin{bmatrix} \mathbf{y}_1 \end{bmatrix}$ |  |
|---|-----------------|----------|-------------------|----------|-----------------|-----------------------|---|----------------------------------------------|--|
|   | $A_{21}$        | $A_{22}$ | $A_{23}$          | $A_{24}$ | $A_{25}$        | <b>x</b> <sub>2</sub> |   | <b>y</b> <sub>2</sub>                        |  |
|   | $A_{31}$        | $A_{32}$ | $A_{33}$          | $A_{34}$ | A <sub>35</sub> | <b>x</b> 3            | = | $ \mathbf{y}_3 $                             |  |
|   | $A_{41}$        | $A_{42}$ | $\mathrm{A}_{43}$ | $A_{44}$ | $A_{45}$        | <b>x</b> 4            |   | <b>y</b> <sub>4</sub>                        |  |
| l | A <sub>51</sub> | $A_{52}$ | $A_{53}$          | $A_{54}$ | A <sub>55</sub> | <b>x</b> <sub>5</sub> |   | <b>y</b> 5                                   |  |

It is quite easy to write down the SSS representation for the tridiagonal matrix!

$$\begin{bmatrix} a_1 & b_1 & 0 & 0 & 0 \\ c_1 & a_2 & b_2 & 0 & 0 \\ 0 & c_2 & a_3 & b_3 & 0 \\ 0 & 0 & c_3 & a_4 & b_4 \\ 0 & 0 & 0 & c_4 & a_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix}$$

The *w*'s and *r*'s are zero for the mixed LTV system:

$$g_{k} = 0 \cdot g_{k+1} + 1 \cdot x_{k}, \quad g_{n} = 1 \cdot x_{n}$$
  

$$h_{k} = 0 \cdot h_{k-1} + 1 \cdot x_{k}, \quad h_{1} = 1 \cdot x_{1}$$
  

$$y_{k} = b_{k} \cdot g_{k+1} + c_{k} \cdot h_{k-1} + a_{k} x_{k}.$$

# Square partitions: Hankel block ranks are preserved during inversion

# Lemma Let $\begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}^{-1} \in \mathbb{F}^{(n_1+n_2)\times(n_1+n_2)}$ with square $A_{11} \in \mathbb{F}^{n_1 \times n_1}$ . Then, rank $B_{21} = \operatorname{rank} A_{21}$ , rank $B_{12} = \operatorname{rank} A_{12}$ .

The inverse of the tridiagonal is also described by a mixed LTV system:

$$g_k = w_k \cdot g_{k+1} + v_k \cdot x_k,$$
  

$$h_k = r_k \cdot h_{k-1} + q_k \cdot x_k,$$
  

$$y_k = b_k \cdot g_{k+1} + c_k \cdot h_{k-1} + a_k x_k.$$

but w's and r's will no longer zero!

Algebraic properties of SSS: closure under sums, products, and inverses!

- Inverse of an SSS matrix (with square partitions) is again an SSS matrix of the same state dimensions.
- Sums of SSS matrices are SSS, but with a *doubling* of the state dimensions.
- Products of SSS matrices are also SSS with a *doubling* of the state dimensions.

#### From mat-vec to solving Ax = b: matrix representation of state-space equations



#### From mat-vec to solving Ax = b: re-ordering yields a fast solver

Block-sparsity pattern *matches* the underlying graph!



Recall: Line graphs have a *perfect* elimination order!

# SSS matrices not suitable for 2D Laplacians: Hankel ranks grow with $O(\sqrt{n})$



with  $\sqrt{n}$ -by- $\sqrt{n}$  block partitioning  $\rightarrow$  approx.  $n^{1.5}$  parameters

The problem: what are the low-rank properties of inverses of sparse matrices?

Motivation: shortcomings of existing rank-structured representations in applications

A potential framework: GIRS matrices and their representations

GIRS representations on acyclic graphs: tree quasi-separable matrices

Conclusions & future work

### Graph-partitioned matrices: associate a directed graph with a block-partitioned matrix



Associate  $\mathbb{G} = (\mathbb{V}, \mathbb{E})$  with a block-partitioned matrix

$$\mathbf{y}_i = \sum_{j \in \mathbb{V}} \mathrm{T}\{i, j\} \mathbf{x}_j, \quad i \in \mathbb{V}.$$

# Hankel blocks induced by graph cuts



Let  $\mathbb{A} \subset \mathbb{V}$  and  $\overline{\mathbb{A}} = \mathbb{V} \setminus \mathbb{A}$  so that  $\Pi_1 T \Pi_2 = \begin{bmatrix} T\{\mathbb{A}, \mathbb{A}\} & T\{\mathbb{A}, \overline{\mathbb{A}}\} \\ T\{\overline{\mathbb{A}}, \mathbb{A}\} & T\{\overline{\mathbb{A}}, \overline{\mathbb{A}}\} \end{bmatrix}.$ 

Call  $T\{\overline{\mathbb{A}}, \mathbb{A}\}$  as the Hankel block induced by  $\mathbb{A}$ .

This generalizes the Hankel blocks from earlier!

# GIRS: a full characterization of all low-rank structures in $(T, \mathbb{G})$



# Definition (GIRS property)

 $(T, \mathbb{G})$  satisfies the graph-induced rank structure for a constant  $c \ge 0$  if  $\forall \mathbb{A} \subset \mathbb{V}$ ,

 $\operatorname{rank} \operatorname{T}\{\overline{\mathbb{A}}, \mathbb{A}\} \leq c \cdot \mathcal{E}(\mathbb{A}),$ 

where  $\mathcal{E}(\mathbb{A})$  the number of border edges.

# The GIRS property is an invariant under inversion



# Theorem (GIRS property)

If  $(T, \mathbb{G})$  satisfies the graph-induced rank structure for a constant  $c \ge 0$ , then so does  $(T^{-1}, \mathbb{G})$ .

#### Proof.

Recall the lemma from earlier...

The 2D-Laplacian satisfies the GIRS property for c = 1 if  $\mathbb{G}$  is the adjacency graph



In fact, all sparse matrices are GIRS with c = 1 w.r.t. their adjacency graph...

GIRS representations: run "LTV systems" on arbitrary graphs

Associate with every edge  $(i,j) \in \mathbb{E}$  the state vector  $\boldsymbol{h}_{(i,j)} \in \mathbb{F}^{\rho_{(i,j)}}$ .



# GIRS representations generalize SSS matrices



Line graph: diagonal edge-to-edge operators can be set to zero *without* loss-of-generality! U Decouples dynamics in *upstream* & downstream flow!

# GIRS representation allow for linear parametrizations of 2D Laplacians

Edge-to-edge operators again zero (similar to tridiagonal matrices):

$$\begin{array}{c|ccccc} (i+1,j) & (i-1,j) & (i,j+1) & (i,j-1) \\ (i+1,j+1) & 0 & 0 & 0 & * \\ (i-1,j+1) & 0 & 0 & 0 & * \\ (i-1,j-1) & 0 & 0 & 0 & * \\ (i-1,j-1) & 0 & 0 & 0 & * \\ y_{(i,j)} & * & * & * & * & * \end{array}$$



Using a scalar partitioning  $\rightarrow$  approx. 5<sup>2</sup>  $\cdot$  *n* parameters

For general GIRS representation, Gauss elimination is needed for mat-vec operation!

$$\begin{split} \boldsymbol{h}_{(i,j)} &- \sum_{w \in \mathcal{N}(i)} \mathbf{A}_{j,w}^{i} \boldsymbol{h}_{(w,i)} - \mathbf{B}_{j}^{i} \boldsymbol{x}_{i} = \mathbf{0}, \quad (i,j) \in \mathbb{E} \\ &\sum_{i \in \mathcal{N}(j)} \mathbf{C}_{i}^{j} \boldsymbol{h}_{(i,j)} + \mathbf{D}^{j} \boldsymbol{x}_{i} = \boldsymbol{y}_{j}, \quad j \in \mathbb{V}. \\ &\downarrow \\ &\begin{bmatrix} \mathbf{I} - \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \boldsymbol{h} \\ \boldsymbol{x} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \boldsymbol{y} \end{bmatrix} \\ &\downarrow \end{split}$$

Solve (I - A)h = -Bx to find h first!

One needs to be cautious that  $\mathrm{I}-\mathrm{A}$  is not singular!

GIRS representations admit fast solvers through the sparse embedding trick!



$$\begin{split} \boldsymbol{h}_{(i,j)} &- \sum_{w \in \mathcal{N}(i)} \mathbf{A}_{j,w}^{i} \boldsymbol{h}_{(w,i)} - \mathbf{B}_{j}^{i} \boldsymbol{x}_{i} = 0, \quad (i,j) \in \mathbb{E} \\ &\sum_{i \in \mathcal{N}(j)} \mathbf{C}_{i}^{j} \boldsymbol{h}_{(i,j)} + \mathbf{D}^{j} \boldsymbol{x}_{i} = \boldsymbol{y}_{j}, \quad j \in \mathbb{V}. \end{split}$$

Group adjoining variables:  $\boldsymbol{\theta}_j = (\boldsymbol{h}_{(i_1,j)}, \dots, \boldsymbol{h}_{(i_p,j)}, \boldsymbol{x}_j)$  and  $\boldsymbol{\gamma}_j = (0, \dots, 0, \boldsymbol{y}_j)$ 

Conditions for a fast solver:

- 1. state dimensions  $\rho_{(i,j)}$  are small,
- 2. degrees of the nodes are small,
- 3.  $\mathbb G$  is a good elimination order.

Block-sparsity pattern of  $\Xi \theta = \gamma$  satisfies  $\Xi_{ij} = 0$  if  $(i, j) \notin \mathbb{E}$ .

# Example: 2-by-3 mesh

|   | $A_{2,2}^1$ $A_{2,4}^1$ $B_2^1$ | -1 0 0 0                                 | 0 0 0                                   | 0 0 0                           | 0 0 0 0                                     | 0 0 0                                                                                   | [ <b>h</b> <sub>(21)</sub> ] ΓΟ             |
|---|---------------------------------|------------------------------------------|-----------------------------------------|---------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------|
|   | $A_{42}^1$ $A_{44}^1$ $B_4^1$   | 0 0 0 0                                  | 0 0 0                                   | -/ 0 0                          | 0 0 0 0                                     | 0 0 0                                                                                   | <b>h</b> (4,1) 0                            |
| i | $C_2^1$ $C_4^1$ $D^1$           | 0 0 0 0                                  | 0 0 0                                   | 0 0 0                           | 0 0 0 0                                     | 0 0 0                                                                                   | X1 V1                                       |
|   | -/ 0 0                          | $A_{11}^2$ $A_{13}^2$ $A_{15}^2$ $B_1^2$ | 0 0 0                                   | 0 0 0                           | 0 0 0 0                                     | 0 0 0                                                                                   | $h_{(1,2)} = 0$                             |
|   | 0 0 0                           | $A_{31}^2$ $A_{33}^2$ $A_{35}^2$ $B_3^2$ | -1  0  0                                | 0 0 0                           | 0 0 0 0                                     | 0 0 0                                                                                   | $ h_{(3,2)}  = 0$                           |
|   | 0 0 0                           | $A_{51}^2$ $A_{53}^2$ $A_{55}^2$ $B_5^2$ | 0 0 0                                   | 0 0 0                           | -1 0 0 0                                    | 0 0 0                                                                                   | $ h_{(5,2)}  = 0$                           |
| j | 0 0 0                           | $C_1^2$ $C_3^2$ $C_5^2$ $D^2$            | 0 0 0                                   | 0 0 0                           | 0 0 0 0                                     | 0 0 0                                                                                   | $ \mathbf{x}_2 $ $ \mathbf{y}_2 $           |
|   | 0 0 0                           | 0 -1 0 0                                 | $A_{2,2}^3$ $A_{2,6}^3$ $B_2^3$         | 0 0 0                           | 0 0 0                                       | 0 0 0                                                                                   | h(2,3) 0                                    |
|   | 0 0 0                           | 0 0 0 0                                  | $A_{6,2}^{3}$ $A_{6,6}^{3}$ $B_{6}^{3}$ | 0 0 0                           | 0 0 0                                       | -/ 0 0                                                                                  | <b>h</b> <sub>(6,3)</sub> 0                 |
| i | 0 0 0                           | 0 0 0 0                                  | $C_{2}^{3}$ $C_{6}^{3}$ $D^{3}$         | 0 0 0                           | 0 0 0                                       | 0 0 0                                                                                   | <b>x</b> <sub>3</sub> <b>y</b> <sub>3</sub> |
|   | 0 -1 0                          | 0 0 0 0                                  | 0 0 0                                   | $A_{1,1}^4$ $A_{1,5}^4$ $B_2^4$ | 0 0 0 0                                     | 0 0 0                                                                                   | $h_{(1,4)} = 0$                             |
|   | 0 0 0                           | 0 0 0 0                                  | 0 0 0                                   | $A_{5,1}^4$ $A_{5,5}^4$ $B_5^4$ | 0 -1 0 0                                    | 0 0 0                                                                                   | <b>h</b> (5,4) 0                            |
|   | 0 0 0                           | 0 0 0 0                                  | 0 0 0                                   | $C_1^4$ $C_5^4$ $D^4$           | 0 0 0 0                                     | 0 0 0                                                                                   | <b>x</b> <sub>4</sub> <b>y</b> <sub>4</sub> |
| ĺ | 0 0 0                           | 0 0 -/ 0                                 | 0 0 0                                   | 0 0 0                           | $A_{2,2}^5$ $A_{2,4}^5$ $A_{2,6}^5$ $B_1^5$ | 0 0 0                                                                                   | <b>h</b> (2,5) 0                            |
|   | 0 0 0                           | 0 0 0 0                                  | 0 0 0                                   | 0 -/ 0                          | $A_{4,2}^5$ $A_{4,4}^5$ $A_{4,6}^5$ $B_3^5$ | 0 0 0                                                                                   | <b>h</b> <sub>(4,5)</sub> 0                 |
|   | 0 0 0                           | 0 0 0 0                                  | 0 0 0                                   | 0 0 0                           | $A_{6,2}^5$ $A_{6,4}^5$ $A_{6,6}^5$ $B_5^5$ | 0 -/ 0                                                                                  | <b>h</b> <sub>(6,5)</sub> 0                 |
|   | 0 0 0                           | 0 0 0 0                                  | 0 0 0                                   | 0 0 0                           | $C_2^5$ $C_4^5$ $C_6^5$ $D^5$               | 0 0 0                                                                                   | x <sub>5</sub> y <sub>5</sub>               |
|   | 0 0 0                           | 0 0 0 0                                  | 0 -/ 0                                  | 0 0 0                           | 0 0 0 0                                     | A <sup>6</sup> <sub>3,3</sub> A <sup>6</sup> <sub>3,5</sub> B <sup>6</sup> <sub>3</sub> | <b>h</b> (3,6) 0                            |
|   | 0 0 0                           | 0 0 0 0                                  | 0 0 0                                   | 0 0 0                           | 0 0 -/ 0                                    | A <sup>6</sup> <sub>5.3</sub> A <sup>6</sup> <sub>5.5</sub> B <sup>6</sup> <sub>5</sub> | <b>h</b> (5,6) 0                            |
|   | 0 0 0                           | 0 0 0 0                                  | 0 0 0                                   | 0 0 0                           | 0 0 0 0                                     | $C_{3}^{6}$ $C_{5}^{6}$ $D^{6}$                                                         | <b>x</b> <sub>6</sub> <b>y</b> <sub>6</sub> |
|   |                                 |                                          |                                         |                                 |                                             |                                                                                         |                                             |

GIRS representations (generically) satisfy the closure property

$$\begin{bmatrix} I - A & B \\ C & D \end{bmatrix} \begin{bmatrix} \boldsymbol{h} \\ \boldsymbol{x} \end{bmatrix} = \begin{bmatrix} 0 \\ \boldsymbol{y} \end{bmatrix}$$

$$\downarrow$$

$$\begin{bmatrix} I - (A - BD^{-1}C) & BD^{-1} \\ D^{-1}C & D^{-1} \end{bmatrix} \begin{bmatrix} \boldsymbol{h} \\ \boldsymbol{y} \end{bmatrix} = \begin{bmatrix} 0 \\ \boldsymbol{x} \end{bmatrix}$$

$$\downarrow$$

$$S^{i} = \begin{bmatrix} A^{i}_{j_{1},j_{1}} - B^{i}_{j_{1}}inv(D^{i})C^{i}_{j_{1}} & \cdots & A^{i}_{j_{1},j_{p}} - B^{i}_{j_{1}}inv(D^{i})C^{i}_{j_{p}} & B^{i}_{j_{1}}inv(D^{i}) \\ \vdots & \ddots & \vdots & \vdots \\ A^{i}_{j_{p},j_{1}} - B^{i}_{j_{p}}inv(D^{i})C^{i}_{j_{1}} & \cdots & A^{i}_{j_{p},j_{p}} - B^{i}_{j_{p}}inv(D^{i})C^{i}_{j_{p}} & B^{i}_{j_{p}}inv(D^{i}) \\ \vdots & \ddots & \vdots & \vdots \\ A^{i}_{j_{p},j_{1}} - B^{i}_{j_{p}}inv(D^{i})C^{i}_{j_{1}} & \cdots & A^{i}_{j_{p},j_{p}} - B^{i}_{j_{p}}inv(D^{i})C^{i}_{j_{p}} & B^{i}_{j_{p}}inv(D^{i}) \\ \vdots & \cdots & \vdots & \cdots & \vdots \\ A^{i}_{j_{p},j_{1}} - B^{i}_{j_{p}}inv(D^{i})C^{i}_{j_{1}} & \cdots & inv(D^{i})C^{i}_{j_{p}} & B^{i}_{j_{p}}inv(D^{i}) \\ \vdots & \cdots & \vdots & \cdots & inv(D^{i})C^{i}_{j_{p}} & inv(D^{i}) \end{bmatrix}$$

Also, addition and product have nice formulas

SSS inverse and GIRS representation inverse: a subtle difference

$$n - 2$$
  $n - 1$   $n$ 

The formula in the previous slide gives:

$$\mathbf{S}^{i} = \begin{bmatrix} -\mathbf{B}_{i+1}^{i} \mathrm{inv}(\mathbf{D}^{i})\mathbf{C}_{i+1}^{i} & \mathbf{A}_{i+1,i-1}^{i} - \mathbf{B}_{i+1}^{i} \mathrm{inv}(\mathbf{D}^{i})\mathbf{C}_{i-1}^{i} & \mathbf{B}_{i+1}^{i} \mathrm{inv}(\mathbf{D}^{i}) \\ \underline{\mathbf{A}_{i-1,i+1}^{i} - \mathbf{B}_{i-1}^{i} \mathrm{inv}(\mathbf{D}^{i})\mathbf{C}_{i+1}^{i} & -\mathbf{B}_{i-1}^{i} \mathrm{inv}(\mathbf{D}^{i})\mathbf{C}_{i-1}^{i} & \mathbf{B}_{i-1}^{i} \mathrm{inv}(\mathbf{D}^{i}) \\ \hline \mathrm{inv}(\mathbf{D}^{i})\mathbf{C}_{i+1}^{i} & \mathrm{inv}(\mathbf{D}^{i})\mathbf{C}_{i-1}^{i} & \mathrm{inv}(\mathbf{D}^{i}) \end{bmatrix}$$

SSS theory guarantees more! A realization of form:

$$\mathbf{S}^{i} = \begin{bmatrix} \mathbf{0} & \mathbf{A}_{i+1,i-1}^{i} & \mathbf{B}_{i+1}^{i} \\ \mathbf{A}_{i-1,i+1}^{i} & \mathbf{0} & \mathbf{B}_{i-1}^{i} \\ \hline \mathbf{C}_{i+1}^{i} & \mathbf{C}_{i-1}^{i} & \mathbf{D}^{i} \end{bmatrix}$$

The latter requires no Gauss elimination for mat-vec!

GIRS representations satisfy the GIRS property by construction

#### Theorem

A GIRS representation with rank-profile  $\{\rho_e\}_{e \in \mathbb{R}}$  of a graph-partitioned matrix  $(T, \mathbb{G})$  satisfies the GIRS-property for

 $c = \max_{e \in \mathbb{E}} \rho_e.$ 

#### Proof.

A proof of this theorem was given in a talk in CAM23 at Selva di Fasano by Shiv Chandrasekaran.

SSS matrices: the result can be extended in the other as well.



A one-to-one relationship between Hankel block ranks and state dimensions:

$$ho_{(i,j)}=\mathsf{rank}\,\mathrm{H}_{(i,j)}:=\mathsf{rank}\,\mathrm{T}\{ar{\mathbb{A}}, m{\mathbb{A}}\}$$

Stronger result: Implication is in both directions:

$$\rho_{(i,j)} < c \qquad \Leftrightarrow \qquad T \text{ is GIRS-}c$$

Can the implication be in both directions in general?

#### Conjecture

A graph-partitioned matrix  $(T, \mathbb{G})$  is GIRS-c if, and only if, there exists GIRS representation for  $(T, \mathbb{G})$  with  $\rho_e < c$  for all  $e \in \mathbb{E}$ .

#### Small GIRS constant implies compact GIRS representation!

This conjecture is intimately tied to the construction/realization problem!

The problem: what are the low-rank properties of inverses of sparse matrices?

Motivation: shortcomings of existing rank-structured representations in applications

A potential framework: GIRS matrices and their representations

GIRS representations on acyclic graphs: tree quasi-separable matrices

Conclusions & future work

# A partial verification of the GIRS conjecture



chordal structure  $\rightarrow$  "fast" solvers through elimination of leaf nodes

#### Theorem

The GIRS conjecture holds for acyclic graphs, i.e., graphs with no cycles.

Proving GIRS conjecture: a special tree quasi-separable (TQS) realization always exists

Node k with parent j and children  $i_1, \ldots, i_p$ :



**Tree graph:** Diagonal edge-to-edge operators are set to zero!  $\downarrow$ Decouples dynamics into an explicit flow starting from the leaves! Proving GIRS conjecture: a special tree quasi-separable (TQS) realization always exists

Entries Node k with parent j and children  $i_1, \ldots, i_p$ :



Tree graph: Diagonal edge-to-edge operators are set to zero!  $\downarrow \downarrow$ Decouples dynamics into an explicit flow starting from the leaves! SSS generalization: Hankel block ranks specify dimensions of minimal TQS representation



 $\rho_{(i,j)} = \operatorname{rank} \operatorname{H}_{(i,j)} := \operatorname{rank} \operatorname{T}\{\overline{\mathbb{A}}, \mathbb{A}\}$ 

#### Construction from a finite number of low-rank factorizations:

Govindarajan, N., Chandrasekaran, S., Dewilde, P. (2024). Tree quasi-separable matrices: a simultaneous generalization of sequentially and hierarchically semi-separable representations. arXiv preprint.

# $\mathsf{TQS}\xspace$ is a strict generalization of SSS and HSS

- TQS reduces to SSS if  $\mathbb{G}$  is the line graph.
- **T**QS reduces to HSS if G is a binary tree with *empty* non-leaf nodes.
- In all other cases, it is neither SSS nor HSS.

Many of the algorithms for SSS and HSS generalize to TQS:

development of more flexible and powerful code possible!

The problem: what are the low-rank properties of inverses of sparse matrices?

Motivation: shortcomings of existing rank-structured representations in applications

A potential framework: GIRS matrices and their representations

GIRS representations on acyclic graphs: tree quasi-separable matrices

Conclusions & future work

The state of affairs: acyclic graph-partitioned matrices



- GIRS conjecture: solved and true!
- Construction: TQS realizations is possible in finite number of low-rank factorizations.
- Special realizations: A special TQS realization always exists that decouples dynamics into an explicit flow.
- Algebraic properties: closed under sums, products, and inverses.
- *Fast solvers:* chordal structure ensures good elimination order.

# The state of affairs: general graph-partitioned matrices



- *GIRS conjecture:* yet to be answered!
- *Construction:* no general algorithm for constructing realizations.
- *Special realizations:* not known when realizations exist that simplify the dynamics.
- Algebraic properties: closure under sums, products, and inverses.
- *Fast solvers:* contingent on existence of good elimination orders.

# Future work

- 1. Develop formulas, factorization algorithms, software for TQS, e.g.:
  - Inner-outer
  - (Pseudo-)inverse
  - LU / Cholesky
  - ULV
- 2. Applications of TQS, e.g.:
  - Exterior Helmholtz problems on "branchy" domains
  - Distributed control on acyclic graphs
- 3. Theoretical work: proving GIRS conjecture for cycle graphs?
- 4. Construction of more general GIRS representations using optimization-based techniques?

- Shivkumar Chandrasekaran
- Patrick Dewilde
- Ethan Epperly
- Vamshi C. Madala
- Lieven De Lathauwer