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Overview

The problem: what are the low-rank properties of inverses of sparse matrices?



Question:

what is the algebraic structure of the inverse of a tridiagonal matrix?

a b
a a b
A= Cy a3 b3
C3 as b4

C4 as

Adjacency graph G(A):




Answer: quasi-separable structure
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algebraic structure: All off-diagonal blocks are unit rank...
representation: Quasi-separable matrices (there are others)
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Answer: quasi-separable structure

di pP1rngz pirir2qs  pirirr3qs  pirirrirags
uotivy d> P2r2q3  p2r2r3qa pa2rarsraqgs
ATl = ustivi ustavo d3 p3r3qa p3r3raqs
uststativi  uststavo  uat3va da P4qs
ustatstotivy  ustatstovo  Uststzva ustavy ds

algebraic structure: All off-diagonal blocks are unit rank...
representation: Quasi-separable matrices (there are others)

no. of parameters in the quasi-separable representation of A~!

~
~

no. of nonzero entries in A



Continuous case: tridiagonal matrix A is a discretization of operator A := w(x)

A simple boundary value ODE problem:

w0 g0 =1, q@)=0. q(1)=0, w(x)=1

Integral formulation:
1
ab) A [ Kexy)atny = £

x(y—1), 0<x<

—= <

with semi-separable kernel K(x,y) =
P boy) {y(x—l) y<x<



d2

Continuous case: tridiagonal matrix A is a discretization of operator A := w(x)

Discretization (e.g. using Nystrom's method) of

/0 (5(x — y) — AK(x,¥)) q(y)dy = F(x)

yields the linear system:

di p1q2 pi1Gg3 Piga Ppigs q by
upvi  dr PGz p2Ga P2gs a2 by
usvi uzv2  d3 p3qa P3gs 3| = | b3
ugvi Ugvo  ugvz  d4 pags qa by
Usvi UsVo UsV3 UsVy  ds a5 bs
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Quasi-separable matrices are closed under inversion!

Closure property: The inverse of a quasi-separable matrix is again quasi-separable.

[
m Tridiagonal matrices are a special case of quasi-separable.

m Note: the inverse of a quasi-separable is generally not tridiagonal.
[

Addition & products preserve “quasi-separable structures” (more later!)

Quasi-separable matrices

Tridiagonal matrices
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Focus of this talk: what can we say for more general sparse matrices?

Given a sparse matrix A € C™" with adjacency graph G(A):
1. What are the algebraic structures preserved by A=1?

2. Does there exist suitable representation A~! satisfying the closure property?

1. graph-induced rank-structure (GIRS)
2. Rank-structured matrices induced by dynamical systems on graphs:

m Acyclic adjacency graphs: a complete answer
m Non-acyclic adjacency graphs: a partial answer
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Overview

Motivation: shortcomings of existing rank-structured representations in applications
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Rank-structured matrices in practice: boundary element method for BVPs

Exterior Helmholtz with Dirichlet boundary conditions

r’ %
V2u(x) + K2u(x) =0, x€R2\Q Vil e

u(x) = g(x), xe€ 0

Reformulate to Fredholm integral equation on 02

!

Fast multipole method (FMM): exploit low-rank structures in far-field

Rokhlin, Viadimir. "Rapid solution of integral equations of classical potential theory.” Journal of
computational physics 60, no. 2 (1985): 187-207.
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Rank-structured matrices in practice: Schur complements in PDE discretizations

Low off-diagonal rank structure in Sy = Ax — CkSkillBk, So = Ao

Ay B
G A

Chandrasekaran, Shiv, Patrick Dewilde, Ming Gu, and Naveen Somasunderam. "On the numerical rank
of the off-diagonal blocks of Schur complements of discretized elliptic PDEs.” SIAM Journal on Matrix
Analysis and Applications 31, no. 5 (2010): 2261-2290.
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Rank-structured matrices in practice: optimal control of spatially distributed systems

T~ Y

Vibrating string: & V(X = k(x)6 voot) 4 b(x)u(x,t)

[SNNNN
SR~

Vehicle platoon

it Low-rank structure in state-space models:
x = Ax + Bu
’ y = Cx+ Du

Communication constraints on feedback u = Fx!

Rice, Justin K., and Michel Verhaegen. "Distributed control: A sequentially semi-separable approach

for spatially heterogeneous linear systems.” IEEE Transactions on Automatic Control 54, no. 6 (2009):

1270-1283.

Bamieh, Bassam, Fernando Paganini, and Munther A. Dahleh. "Distributed control of spatially
invariant systems.” |EEE Transactions on automatic control 47, no. 7 (2002): 1091-1107.
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Many frameworks for efficient linear algebra with rank-structured matrices

All have their benefits and special use cases:
m FMM matrices (Rokhlin & Greengard)
m Hierarchichally semi-separable (HSS) matrices (Chandrasekaran & Gu)

m Sequentially Semi-Separable (SSS) matrices (Chandrasekaran, Dewilde, van der
Veen)

m HODLR
m H-matrices and H?-matrices (Hackbusch)
m Quasi-separable matrices (Eidelman, Gohberg)

m Semi-separable matrices (Van Barel, Vandebril, Mastronardi)

Our interest:
Rank-structured matrices with closure property — direct solvers & preconditioners
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SSS matrices: input-output map of mixed linear time-variant (LTV) system

X1 XQfL X3/L X4L X5
Y1 Y2T Y3T }’4T Y5

state-space dynamics:

g8 = Wkgk+1+VZXk, gn:VnTxn

hy = Rihe1+Qlxk, hi=Qfx;
Yi = Uk8ks1+ Prhg—1+ Dix.
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SSS matrices: input-output map of mixed linear time-variant (LTV) system

X1 xiL X3/L X4L X5
Y1 y;f J@;T }’4T Y5

Resulting input-output relation:

D U1V,  U1WaVy UiWoaW3V,] Ui WoW3W, V. T [x1 ¥1
P2Q1T D2 UQV:;F U2VV3V;‘r U2VV3VV4V5T X2 Yo
P3R,Q; P3Q, Ds U3V, UsW,V x3| = |y3

P,R3R2Q]  PsR3Q;  PaQg Dy UsVd X4 Ya
PsR4R3R2Q{ PsR4R3Q) PsRaQJ PsQ, Ds X5 5
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The ranks of the so-called Hankel blocks dictate the state dimension sizes

X1 X2 X3 X4 Xs
L
MR

Y1 Yo ys3 Y4 Y5

state dimension of h; < rank H;

A | A Az A Ags X1 Y1
A1 | A Az Ax Aps X2 Y
Azr | Azx Asz Aszg Ass | |x3| = |y3
Az | Agp Agz A Aygs X4 Ys
Asy | Aso Asz Asq Ass | | x5 Ys

Notice how the cuts correspond to the Hankel blocks



The ranks of the so-called Hankel blocks dictate the state dimension sizes

X1 X2 X3 X4 Xs
I
Il 0

Y1 Yo ys3 Y4 Y5

state dimension of hy < rank Hy

Air A | Az A Ags X1 Y1

Arr Ax | Az Ay Axs X2 Yo
Az Az | Az Az Ass x3| = |y3
Agr Ago | Agz Ags Aygs X4 Y4

Asi Asy | Asz Asy Ass X5 Ys

Notice how the cuts correspond to the Hankel blocks



The ranks of the so-called Hankel blocks dictate the state dimension sizes

X1 X2 X3 X4 Xs
Lo
IR

Y1 Yo Y3 Y4 Y5

state dimension of h3 < rank H3

Air A Az | A Ags X1 Y1
Axr Az Axz | Ay Axs X2 Yo
A3r Az Aszz | Ay Ags x3| = |y3

Agr Agp Auz | Ags Ays X4 Y4
Asi Asy Asz | Asy Ass X5 Ys

Notice how the cuts correspond to the Hankel blocks
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The ranks of the so-called Hankel blocks dictate the state dimension sizes

X1 X2 X3 X4 Xs
| D W
Il

Y1 Yo Y3 Y4 Y5

state dimension of hy < rank Hy

Ann A Az A | Ags X1 Y1
Ax; Axx Axz Apg | Axs | | x2 Y2
Az1 Az Aszz Az | Ass | [x3| = |y3
Agr Agx Az Agg | Ags | | x4 Ya
Asi Asz Asz Ass | Ass | [xs Ys

Notice how the cuts correspond to the Hankel blocks



It is quite easy to write down the SSS representation for the tridiagonal matrix!

al b1 0 0 0 X1 "
cg a|b 0 0 X2 y2
0 c|a b3 O x3| = |y3
0 O |c as by | x4 Ya
0 0 0 C4 as X5 Y5

The w's and r’s are zero for the mixed LTV system:

8k
hy

Yk

O-gks1+1-x, gn=1-x,
O-he1+1-x, hi=1-x1
bi - g1+ Ck - he—1 + akx.
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Square partitions: Hankel block ranks are preserved during inversion

Lemma

=)
Let [gn gu] _ [ﬁn ﬁlz] € Flm+m)x(m+m) ywith square Ayy € FMm*m . Then,
21 B 21 A

rank Bo; = rank Ay, rank B1o = rank A1».

The inverse of the tridiagonal is also described by a mixed LTV system:

8k = Wk 8k+1+ Vi Xk,
he = rc-he—1+ Qi - X,
Yk = bk gky1+ ck hk—1 + akxk.

but w's and r's will no longer zero!
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Algebraic properties of SSS: closure under sums, products, and inverses!

m Inverse of an SSS matrix (with square partitions) is again an SSS matrix of the
same state dimensions.

m Sums of SSS matrices are SSS, but with a doubling of the state dimensions.

m Products of SSS matrices are also SSS with a doubling of the state dimensions.
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I W vy
I - vy
I W, vy
/ — V5T
/ -Q7
R -Qf
Ry I Q7
Ry —Qf
U D,
Us P> D,
Us Py Ds
Us Py Dy
Ps Ds

From mat-vec to solving Ax = b: matrix representation of state-space equations
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From mat-vec to solving Ax = b: re-ordering yields a fast solver

Block-sparsity pattern matches the underlying graph!

C 0 ar
Dy | Uy
I V[ —w,
~R, I-Qf
P, D, | Us
I VAR pT7A
—Rs I -Qf
Ps D; | Us
I V[ —W,
~R, (e}
P, Dy | Us
V7

I Ps Ds

Recall: Line graphs have a perfect elimination order!

h
X1
82
ha
X0
83
h3
X3
84
hy
X4
85

X5_

O‘E‘o o‘g‘o o‘g‘o O‘S"O

&
L
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SSS matrices not suitable for 2D Laplacians: Hankel ranks grow with O(+/n)

with y/n-by-\/n block partitioning — approx. n'® parameters
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Overview

A potential framework: GIRS matrices and their representations
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Graph-partitioned matrices: associate a directed graph with a block-partitioned matrix

Y30

Associate G = (V,E) with a
block-partitioned matrix

yi=Y T{ijlxj i€V

Jjev
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Hankel blocks induced by graph cuts

Let AC Vand A =V\A so that

_ [T{A,A} T{A,A}
e = [ 1l g
Call T{A, A} as the Hankel block

induced by A.

This generalizes the Hankel blocks from earlier!
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GIRS: a full characterization of all low-rank structures in (T, G)

Definition (GIRS property)

(T, G) satisfies the graph-induced
rank structure for a constant
c>0ifVACYV,

rank T{A,A} < c-E(A),

where £(A) the number of border
edges.
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The GIRS property is an invariant under inversion

Theorem (GIRS property)

If (T, G) satisfies the
graph-induced rank structure for a

constant ¢ > 0, then so does
(T71,G).

Recall the lemma from
earlier... ]
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The 2D-Laplacian satisfies the GIRS property for ¢ = 1 if G is the adjacency graph

In fact, all sparse matrices are GIRS with ¢ = 1 w.r.t. their adjacency graph...
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GIRS representations: run “LTV systems” on arbitrary graphs

Associate with every edge (i,j) € E the state vector h; ;) € F*0J).

“State-space” dynamics:

h(ijl) AJI'1J1 e Ajl'lJp BJI'1 h(jl,i)
hijp) A 0 A 1 Bh | G
L yi | ¢ - ¢ DL x|
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GIRS representations generalize SSS matrices

Slz[ 0 B§1:| S":[ 0 B§1:|

Cl,,| D Cii| D
1 2 3 n—2 n—1 n
0 Alyi1 | Bl

S = A::—l i+1 0 B:'—l
CI

i i
i+1 Ci—1 ‘ D

Line graph: diagonal edge-to-edge operators can be set to zero without
loss-of-generality!

4

Decouples dynamics in upstream & downstream flow!
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GIRS representation allow for linear parametrizations of 2D Laplacians

Edge-to-edge operators again zero (similar to tridiagonal matrices):

(i+1J4)  (i-1j) (ij+1) (iJ-1) | xip

(i+1,4+1) 0 0 0 0 *
(i—1,4+1) 0 0 0 0 *

SUY) = (i415-1) | 0 0 0 0 *
(i-1,4-1) 0 0 0 0 *

o) |_ * * * * *

Using a scalar partitioning — approx. 52 - n parameters
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For general GIRS representation, Gauss elimination is needed for mat-vec operation!

hip— > A ~Bix; = 0, (i,j)eE
weN (i)
> Clhiy+Dxi =y, jeV.
ieN(j)
!
I-A B][n] Jo
C D||x| |y
!

Solve (I — A)h = —Bx to find h first!

One needs to be cautious that I — A is not singular!
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GIRS representations admit fast solvers through the sparse embedding trick!

hijy— D Ajwhwn—Bxi = 0, (i.j)€E
weN (i)
ieN(j)
1
4 Group adjoining variables:

OJ- = (h(fl,j)7 ey h(ip,j)axj) and ")’j = (07 e ,O,yj)
Conditions for a fast solver:

1. state dimensions p(ij) are small, \
2. degrees of the nodes are small,

Block-sparsity pattern of =6 = ~ satisfies
3. G is a good elimination order. E,-j =0if (i,j) ¢ E.
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Example: 2-by-3 mesh
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GIRS representations (generically) satisfy the closure property

-0

1
I-(A-BD!C) BD1|[h] JoO
D-IC D! ||yl  |x
i}
Aj’.u-1 — le-linV(D’)CJ'-l e Afl'l,jp — Bj’.linv(D’)CJ’.P Bj’-linv(D’)
=1 DG Al i | R
Ajp;jl - ijan(D )le tt Ajpujp - ijan(D )CJP ijan(D )
inv(D')C}, inv(D')C}, | inv(D’)

Also, addition and product have nice formulas
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SSS inverse and GIRS representation inverse: a subtle difference

The formula in the previous slide gives:

. . —Binn.v(D")Cfﬂ ' Ajf+1’i71.— B;ZHiqv(Df)c;;l BjEHinv(D’:)
S' = A:‘-l,i-&-l - B§—1inV(D')C:‘+1 —B}_,inv(D')C]_, Bi_;inv(D’)
inv(D")Cl, inv(D")Ci_, ‘ inv(D')

SSS theory guarantees more! A realization of form:
_ 0 Al | Bin
r_
S'=| Ai1in 0 |Bis
Cia Ciyp | D

The latter requires no Gauss elimination for mat-vec!
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GIRS representations satisfy the GIRS property by construction

A GIRS representation with rank-profile {pe}ecr of a graph-partitioned matrix (T, G)
satisfies the GIRS-property for

C = mMax Pe.
eckE

A proof of this theorem was given in a talk in CAM23 at Selva di Fasano by Shiv
Chandrasekaran. O
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SSS matrices: the result can be extended in the other as well.

A one-to-one relationship between Hankel block ranks and state dimensions:

p(ij) = rank H; jy == rank T{A, A}

Stronger result: Implication is in both directions:

piijy < ¢ & T is GIRS-c
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Can the implication be in both directions in general?

A graph-partitioned matrix (T, G) is GIRS-c if, and only if, there exists GIRS
representation for (T, G) with pe < c for all e € E.

Small GIRS constant implies compact GIRS representation!

This conjecture is intimately tied to the construction/realization problem!

46



Overview

GIRS representations on acyclic graphs: tree quasi-separable matrices
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A partial verification of the GIRS conjecture

Acyclic graphs: tree interpretation

chordal structure — “fast” solvers through elimination of leaf nodes

The GIRS conjecture holds for acyclic graphs, i.e., graphs with no cycles.
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Proving GIRS conjecture: a special tree quasi-separable (TQS) realization always exists

Node k with parent j and children iy,. .., ip:
(k.J) 0 - Ak, Ak |BE
I 7Ip n,J n
Sk Al.; . 0 A}.‘ . Ek
l,;(,ll s ip,J Iﬁ
o Aji(i,' i Ok BJI;
(k, i) (k, i) Ci -G 6D

Tree graph: Diagonal edge-to-edge operators are set to zero!

4

Decouples dynamics into an explicit flow starting from the leaves!
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Proving GIRS conjecture: a special tree quasi-separable (TQS) realization always exists

Entries Node k with parent j and children i1,. .., ip:
5
lo———eo——o
21 65— o T{3,2} = C3AS, AL ;A3 ,B2
3e

Tree graph: Diagonal edge-to-edge operators are set to zero!

4

Decouples dynamics into an explicit flow starting from the leaves!
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SSS generalization: Hankel block ranks specify dimensions of minimal TQS representation

paij) = rank H jy == rank T{A, A}

Construction from a finite number of low-rank factorizations:
Govindarajan, N., Chandrasekaran, S., Dewilde, P. (2024). Tree quasi-separable matrices: a
simultaneous generalization of sequentially and hierarchically semi-separable representations. arXiv

preprint.
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TQS is a strict generalization of SSS and HSS

m TQS reduces to SSS if G is the line graph.

m TQS reduces to HSS if G is a binary tree with empty non-leaf nodes.

m In all other cases, it is neither SSS nor HSS.

Many of the algorithms for SSS and HSS generalize to TQS:

development of more flexible and powerful code possible!
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Overview

Conclusions & future work

53



The state of affairs: acyclic graph-partitioned matrices

general GIRS repr.

TQS

GIRS conjecture: solved and true!

Construction: TQS realizations is possible in finite
number of low-rank factorizations.

Special realizations: A special TQS realization always
exists that decouples dynamics into an explicit flow.
Algebraic properties: closed under sums, products, and
inverses.

Fast solvers: chordal structure ensures good elimination
order.
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The state of affairs: general graph-partitioned matrices

general GIRS repr.

GIRS conjecture: yet to be answered!

Construction: no general algorithm for constructing
realizations.

Special realizations: not known when realizations exist
that simplify the dynamics.

Algebraic properties: closure under sums, products, and
inverses.

Fast solvers: contingent on existence of good
elimination orders.
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Future work

1. Develop formulas, factorization algorithms, software for TQS, e.g.:

m Inner-outer
(Pseudo-)inverse
m LU / Cholesky
m ULV

2. Applications of TQS, e.g.:

m Exterior Helmholtz problems on “branchy” domains
m Distributed control on acyclic graphs

3. Theoretical work: proving GIRS conjecture for cycle graphs?

4. Construction of more general GIRS representations using optimization-based
techniques?
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