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The (L,, L,,1)-decomposition

A third-order tensor 7 € C'*/*K s expanded in the form

R
T=> Hrem, rank(H,)=rank(AB)=L,>0.
r=1

J/mi /e
-

W = A + o+ | Ag




The (L,, L,,1)-decomposition

A third-order tensor 7 € C'*/*K s expanded in the form

R
T = Z H, @ m,, rank(H,)=rank(A,B) =L, > 0.
r=1

Jmi /e
-

W = A + o+ | Ag

Special case: If L, =1 for 1 < r < R, we have a polyadic decomposition (PD).



Uniqueness based on rank profile

A (L., L,,1)-decomposition of 7 € C'**K with rank profile (L, = rank Hr)i<r<r is
essentially unique if every other (L., L,,1)-decomposition

R
_ / /
T—ZH,cbm,
=1,

satisfying the rank profile constraints:

rank H = L, < L,, 1<r<R

is the same up to scaling and permutation ambiguity.



Uniqueness based on rank profile

A (L., L,,1)-decomposition of 7 € C'**K with rank profile (L, = rank Hr)i<r<r is
essentially unique if every other (L., L,,1)-decomposition

R

/ /

T=2 Hem
r=1

satisfying the rank profile constraints:

rankH. = L < L,, 1<r<R

is the same up to scaling and permutation ambiguity.

Special case: Rank profile (L, = 1)1<,<g returns uniqueness definition of the
canonical polyadic decomposition (CPD).



Uniqueness properties of (L,, L,, 1)-decomposition have direct application in the blind
separation of sums of exponentials (BSSE) problem

Consider the linear observations
Yk(t) = measi(t) + miasp(t) + ... + mirsr(t), k=1,...,K

where:

L
s,(t):Za,szJ, 0<t<T,
j=1



Uniqueness properties of (L,, L,, 1)-decomposition have direct application in the blind
separation of sums of exponentials (BSSE) problem

Given Y € CK*T  find the factorization:
Y = MS,

where:

n© - n(T-1) si(0) - su(T 1)

k() - (T —1) 5(0) -+ sr(T—1)



Uniqueness properties of (L,, L,, 1)-decomposition have direct application in the blind
separation of sums of exponentials (BSSE) problem

Define the tensor

(@  ow(1) o (T2 —1)
1 2 T
H[Y](:,:, k) = Hlyk] := yk:( ) yk:( ) )/k(: 2)
y(M=1) y(T1) - w1+ T2=2)

Problem is solved by recovering the (L,, L,,1)-decomposition

R
H[Y] = Hls]em,
r=1

which is unique under mild assumptions.



A tensor may admit multiple “unique” (L,, L,,1)-decompositions

Let
A= [al a as 84], B = [bl b2 b3 b4], M = [ml mg]

be full column rank matrices.

unique under rank profile (L1, L) = (2,3)

(alblT + azb;) ®m + (angT + a3b3T + a4b4T) ® My

(arb] )@ my + (a2b; ) o(my + my) + (asb; + asb] ) e m,

unique under rank profile (L3, L2, L3) = (1,1,2)



Constraints on the rank profile are unknowns in the BSSE problem

The Hankel tensor of the BSSE problem:

si(t) = z+2§

M = full rank
S2(t) _ Z2t—|—Z§+Z£’ [ml mg] ull ran

has two essentially unique (L., L,,1)-decompositions with rank profiles:

(2,3) and (1,1,2).



Constraints on the rank profile are unknowns in the BSSE problem

The Hankel tensor of the BSSE problem:

si(t) = z+2§

M = full rank
S2(t) _ Z2t—|—Z§+Z£’ [ml mg] ull ran

has two essentially unique (L., L,,1)-decompositions with rank profiles:

(2,3) and (1,1,2).

So... how should one know which rank profile must be used?



Dictionary representations: towards an alternative definition of uniqueness

Consider the (L,, L,,1)-decomposition

T T T T
T=Hem + Hgmo, H1:U1V1 + wv, H2:U2V2 + uzvsy .

“Original representation” in terms of the triple (U, V, M), where:

U:[ul w | w U3], V:[vl vz‘v2 V3], I\/I:[ml mg]



Dictionary representations: towards an alternative definition of uniqueness

Consider the (L,, L,,1)-decomposition

-
T=Hem + Hemy, H1:U1V1—F+UQV2, H2=U2V2T+U3V3:r.

Alternatively, we may express

T T T T T T
Hi = &1 uivy + &12 vy + &13 u3vg, Ho = &1 uivy + &0 vy + &3 u3vg,
g >~ g > >~ >~

_ [511 12 513} _
&1 &2 &3



Dictionary representations: towards an alternative definition of uniqueness

Consider the (L,, L,,1)-decomposition

T T T T
T =Hiem + Hy o my, Hi=wmvy +wv,, Hx=uwv, +uzv;.

This leads to the “Dictionary representation” in terms of the tuple (A, B, M, =), where:

A:[Ul u U3], B:[Vl Vo Vg], I\/I:[ml I‘HQ], E:|:



A uniqueness definition based on dictionary representation

Let (1)-(P) denote a list of properties satisfied by the matrices A, B, M, and =.

Collection of all (L,,L,,1)-decompositions that admit a

v = dictionary representation satisfying properties (1)-(P).

Definition

A tensor T € C'**K has a unique (L,, L,,1)-decomposition satisfying properties
(1)-(P) if any other (L,, L,,1)-decomposition in € that describes 7T is the same up to
scaling and permutation ambiguity.



A uniqueness definition based on dictionary representation
Let (1)-(P) denote a list of properties satisfied by the matrices A, B, M, and =.

Collection of all (L,,L,,1)-decompositions that admit a

o= dictionary representation satisfying properties (1)-(P).

Definition

A tensor T € C'**K has a unique (L,, L,,1)-decomposition satisfying properties
(1)-(P) if any other (L,, L,,1)-decomposition in € that describes 7T is the same up to
scaling and permutation ambiguity.

How can we derive uniqueness results with this new definition?



Introducing sparse component analysis (SCA)

- Let D denote a set of “admissible” pairs (M,=) € (CK*R CRxN)
- In SCA:

D is defined through rank and sparsity constraints on M and =, respectively.
- Suppose that C = M= for some (M, =) € D.

Given C € CK*R recover C = M= up to a scaling and permutation ambiguity



A mechanism to derive uniqueness results for (L,, L,, 1)-decompositions

Technical assumptions on admissible set Z:

(a) every (M,=) € Z is proportionality-revealing,

(b) Z is scaled permutation invariant.

Lemma

(A,B,M,=) is the unique (L, L, 1)-
decomposition satisfying properties:
(1) A and B have full column rank, —

2) (M,Z) e 2.

C = M= is unique in &

Hence, proving this is enough!

10



SCA: the intuition behind proving uniqueness of C = M=

A 2-step constructive approach to unique recovery:
1. Recover the columns of M € CX*R up to permutation and scaling ambiguity.
2. Recover C € CR*N by solving

ME, = cp, n=1...N,

with ¢, subjected to “sparsity constraints”

11



SCA: the intuition behind proving uniqueness of C = M=

Given a collection of subspaces of columns of M, when is it possible to all retrieve
individual columns of M?

Answer: when the “richness” property is satisfied + and M has sufficiently high
Kruskal rank

11



SCA: the intuition behind proving uniqueness of C = M=

Given sparsity constraints on =, under what assumption can one decisively recover
subspaces spanned by columns of M from subspaces spanned by columns of C?

-~

Answer: if the so-called “non-degeneracy” assumption is satisfied

11



This leads to the following new uniqueness result

Given Ae C'*N B e C/*N, M e CKXR, and = € CRXN  fix:
2<p<K, i = &

(A, B, M, =) is the unique (L, L,,1)-decomposition sat-

isfying properties:

(1) A and B have full column rank,

(2) rank constraint: k-rank M > p, = is sufficiently rich

— < .
(3) sparsity constraint: = has no zero rows and ev- with parameter m.
ery column of = has at least one and at most m
nonzero entries,

(4) (M, =) is non-degenerate up to parameter m.

12



What does this mean for BSSE problem?
Interpretation of sparsity pattern in =
Let {z,}V_; be an enumeration of all the dinstinct poles in

{Z,—JI].SFSR,].SJSL,}.

L
sr(t):Za,szJ, 1<r<R,
j=1

13



What does this mean for BSSE problem?
Interpretation of sparsity pattern in =

Let {z,}N_, be an enumeration of all the dinstinct poles in

{z:j:1<r<R,1<j< L}

13



What does this mean for BSSE problem?
Interpretation of sparsity pattern in =

Let {z,}N_, be an enumeration of all the dinstinct poles in

{z:j:1<r<R,1<j< L}

N
s(t) = &mzh,  1<r<R,
n=1
nonzero entries in:
rows of = = which poles are present in which source signal
columns of = = which poles are “shared” amongst which source signals

13



Under a mild technical assumption, a larger family of BSSE problems can be solved

K = number of observations, R = number of source signals
K<R K>R
poles must be distinct poles can be shared

14



Under a mild technical assumption, a larger family of BSSE problems can be solved

K = number of observations, R = number of source signals

K <R K>R
poles can be shared

. . I be shared
(provided non-degeneracy assumption) poles can be share

14



Contributions

- A new uniqueness result for (L,, L,, 1)-decompositions inspired from SCA
principles.

- Direct application to BSSE, allowing for a richer set of problems to be solved.
- (not discussed) Numerical implications:
LL1 = CPD + SCA on third factor matrix.
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Open question

So far, we have not been able to answer the following question:

If the richness property is not satisfied,
can we conclude that the (L, L,,1)-decomposition is not unique?
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Further details

Manuscript awaiting review in SIMAX:

(L, L., 1)-decompositions, Sparse Component Analysis, and the blind separation of
sums of exponentials
N. Govindarajan, E. Epperly, L. De Lathauwer.
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