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The (Lr , Lr , 1)-decomposition

Definition

A third-order tensor T ∈ CI×J×K is expanded in the form

T =
R∑

r=1

Hr ⊗ mr , rank(Hr ) = rank(ArB
>
r ) = Lr > 0.

T =

m1

A1

B1

+ · · · +

mR

AR

BR

Special case: If Lr = 1 for 1 ≤ r ≤ R, we have a polyadic decomposition (PD).
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Uniqueness based on rank profile

Definition

A (Lr , Lr , 1)-decomposition of T ∈ CI×J×K with rank profile (Lr = rankHr )1≤r≤R is
essentially unique if every other (Lr , Lr , 1)-decomposition

T =
R∑

r=1

H ′r ⊗ m′r

satisfying the rank profile constraints:

rankH ′r = L′r ≤ Lr , 1 ≤ r ≤ R

is the same up to scaling and permutation ambiguity.

Special case: Rank profile (Lr = 1)1≤r≤R returns uniqueness definition of the
canonical polyadic decomposition (CPD).
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Uniqueness properties of (Lr , Lr , 1)-decomposition have direct application in the blind
separation of sums of exponentials (BSSE) problem

Consider the linear observations

yk(t) = mk1s1(t) + mk2s2(t) + . . .+ mkRsR(t), k = 1, . . . ,K

where:

sr (t) =
Lr∑
j=1

αr ,jz
t
r ,j , 0 ≤ t < T ,
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Uniqueness properties of (Lr , Lr , 1)-decomposition have direct application in the blind
separation of sums of exponentials (BSSE) problem

Problem

Given Y ∈ CK×T , find the factorization:

Y = MS ,

where:

Y :=

y1(0) · · · y1(T − 1)
...

...
yK (0) · · · yK (T − 1)

 , S :=

s1(0) · · · s1(T − 1)
...

...
sR(0) · · · sR(T − 1)

 .
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Uniqueness properties of (Lr , Lr , 1)-decomposition have direct application in the blind
separation of sums of exponentials (BSSE) problem

Define the tensor

H[Y ](:, :, k) = H[yk ] :=


yk(0) yk(1) · · · yk(T2 − 1)
yk(1) yk(2) · · · yk(T2)

...
...

. . .
...

yk(T1 − 1) yk(T1) · · · yk(T1 + T2 − 2)

 .
Problem is solved by recovering the (Lr , Lr , 1)-decomposition

H[Y ] =
R∑

r=1

H[sr ] ⊗ mr ,

which is unique under mild assumptions.
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A tensor may admit multiple “unique” (Lr , Lr , 1)-decompositions

Let
A =

[
a1 a2 a3 a4

]
, B =

[
b1 b2 b3 b4

]
, M =

[
m1 m2

]
be full column rank matrices.

unique under rank profile (L1, L2) = (2, 3)

(a1b>1 + a2b>2 ) ⊗ m1 + (a2b>2 + a3b>3 + a4b>4 ) ⊗ m2

=

(a1b>1 ) ⊗ m1 + (a2b>2 ) ⊗(m1 + m2) + (a3b>3 + a4b>4 ) ⊗ m2

unique under rank profile (L1, L2, L3) = (1, 1, 2)
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Constraints on the rank profile are unknowns in the BSSE problem

The Hankel tensor of the BSSE problem:

s1(t) = z t1 + z t2
s2(t) = z t2 + z t3 + z t4

, M =
[
m1 m2

]
full rank

has two essentially unique (Lr , Lr , 1)-decompositions with rank profiles:

(2, 3) and (1, 1, 2).

So... how should one know which rank profile must be used?
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Dictionary representations: towards an alternative definition of uniqueness

Consider the (Lr , Lr , 1)-decomposition

T = H1 ⊗ m1 + H2 ⊗ m2, H1 = u1v>1 + u2v>2 , H2 = u2v>2 + u3v>3 .

“Original representation” in terms of the triple (U,V ,M), where:

U =
[

u1 u2 u2 u3

]
, V =

[
v1 v2 v2 v3

]
, M =

[
m1 m2

]
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Dictionary representations: towards an alternative definition of uniqueness

Consider the (Lr , Lr , 1)-decomposition

T = H1 ⊗ m1 + H2 ⊗ m2, H1 = u1v>1 + u2v>2 , H2 = u2v>2 + u3v>3 .

Alternatively, we may express

H1 = ξ11︸︷︷︸
=1

u1v>1 + ξ12︸︷︷︸
=1

u2v>2 + ξ13︸︷︷︸
=0

u3v>3 , H2 = ξ21︸︷︷︸
=0

u1v>1 + ξ22︸︷︷︸
=1

u2v>2 + ξ23︸︷︷︸
=1

u3v>3 ,

Ξ =

[
ξ11 ξ12 ξ13

ξ21 ξ22 ξ23

]
=

[
1 1 0
0 1 1

]
.
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Dictionary representations: towards an alternative definition of uniqueness
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T = H1 ⊗ m1 + H2 ⊗ m2, H1 = u1v>1 + u2v>2 , H2 = u2v>2 + u3v>3 .

This leads to the “Dictionary representation” in terms of the tuple (A,B,M,Ξ), where:

A =
[
u1 u2 u3

]
, B =

[
v1 v2 v3

]
, M =

[
m1 m2

]
, Ξ =

[
1 1 0
0 1 1

]
.

7



A uniqueness definition based on dictionary representation

Let (1)-(P) denote a list of properties satisfied by the matrices A, B, M, and Ξ.

C :=
Collection of all (Lr , Lr , 1)-decompositions that admit a
dictionary representation satisfying properties (1)-(P).

Definition

A tensor T ∈ CI×J×K has a unique (Lr , Lr , 1)-decomposition satisfying properties
(1)-(P) if any other (Lr , Lr , 1)-decomposition in C that describes T is the same up to
scaling and permutation ambiguity.

How can we derive uniqueness results with this new definition?
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Introducing sparse component analysis (SCA)

- Let D denote a set of “admissible” pairs (M,Ξ) ∈ (CK×R ,CR×N)

- In SCA:

D is defined through rank and sparsity constraints on M and Ξ, respectively.

- Suppose that C = MΞ for some (M,Ξ) ∈ D.

Problem:

Given C ∈ CK×R , recover C = MΞ up to a scaling and permutation ambiguity
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A mechanism to derive uniqueness results for (Lr , Lr , 1)-decompositions

Technical assumptions on admissible set D :

(a) every (M,Ξ) ∈ D is proportionality-revealing,

(b) D is scaled permutation invariant.

Lemma

(A,B,M,Ξ) is the unique (Lr , Lr , 1)-
decomposition satisfying properties:

(1) A and B have full column rank,

(2) (M,Ξ) ∈ D .

⇐⇒ C = MΞ is unique in D︸ ︷︷ ︸
Hence, proving this is enough!

.
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SCA: the intuition behind proving uniqueness of C = MΞ

A 2-step constructive approach to unique recovery:

1. Recover the columns of M ∈ CK×R up to permutation and scaling ambiguity.

2. Recover C ∈ CR×N by solving

Mξn = cn, n = 1, . . .N,

with ck subjected to “sparsity constraints”
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SCA: the intuition behind proving uniqueness of C = MΞ

Given a collection of subspaces of columns of M, when is it possible to all retrieve
individual columns of M?

 M

 ∩
 M

 =

 M



Answer: when the “richness” property is satisfied + and M has sufficiently high
Kruskal rank
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SCA: the intuition behind proving uniqueness of C = MΞ

Given sparsity constraints on Ξ, under what assumption can one decisively recover
subspaces spanned by columns of M from subspaces spanned by columns of C?

 C

 ?
=

 M



Answer: if the so-called “non-degeneracy” assumption is satisfied
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This leads to the following new uniqueness result

Theorem

Given A ∈ CI×N , B ∈ CI×N , M ∈ CK×R , and Ξ ∈ CR×N , fix:

2 ≤ p ≤ K , m := bp2c.

(A,B,M,Ξ) is the unique (Lr , Lr , 1)-decomposition sat-
isfying properties:

(1) A and B have full column rank,

(2) rank constraint: k-rankM ≥ p,

(3) sparsity constraint: Ξ has no zero rows and ev-
ery column of Ξ has at least one and at most m
nonzero entries,

(4) (M,Ξ) is non-degenerate up to parameter m.

⇐=
Ξ is sufficiently rich
with parameter m.
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What does this mean for BSSE problem?
Interpretation of sparsity pattern in Ξ

Let {zn}Nn=1 be an enumeration of all the dinstinct poles in

{zr ,j : 1 ≤ r ≤ R, 1 ≤ j ≤ Lr}.

sr (t) =
Lr∑
j=1

αr ,jz
t
r ,j , 1 ≤ r ≤ R,

nonzero entries in:

rows of Ξ = which poles are present in which source signal

columns of Ξ = which poles are “shared” amongst which source signals
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Under a mild technical assumption, a larger family of BSSE problems can be solved

K = number of observations, R = number of source signals

K < R

poles must be distinct

K ≥ R

poles can be shared
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Contributions

- A new uniqueness result for (Lr , Lr , 1)-decompositions inspired from SCA
principles.

- Direct application to BSSE, allowing for a richer set of problems to be solved.

- (not discussed) Numerical implications:

LL1 = CPD + SCA on third factor matrix.
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Open question

So far, we have not been able to answer the following question:

If the richness property is not satisfied,
can we conclude that the (Lr , Lr , 1)-decomposition is not unique?
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Further details

Manuscript awaiting review in SIMAX:

(Lr , Lr , 1)-decompositions, Sparse Component Analysis, and the blind separation of
sums of exponentials

N. Govindarajan, E. Epperly, L. De Lathauwer.

17


