$\left(L_{r}, L_{r}, 1\right)$-decompositions, Sparse Component Analysis, and the Blind Separation of Sums of Exponentials

Nithin Govindarajan (KU Leuven)
Joint work with Ethan Epperly (Caltech), Lieven De Lathauwer (KU Leuven)

SeLMA Meeting - 12 October 2021
\qquad

The ($L_{r}, L_{r}, 1$)-decomposition

Definition

A third-order tensor $\mathcal{T} \in \mathbb{C}^{I \times J \times K}$ is expanded in the form

$$
\mathcal{T}=\sum_{r=1}^{R} H_{r} \otimes \boldsymbol{m}_{r}, \quad \operatorname{rank}\left(H_{r}\right)=\operatorname{rank}\left(A_{r} B_{r}^{\top}\right)=L_{r}>0 .
$$

The $\left(L_{r}, L_{r}, 1\right)$-decomposition

Definition

A third-order tensor $\mathcal{T} \in \mathbb{C}^{I \times J \times K}$ is expanded in the form

$$
\mathcal{T}=\sum_{r=1}^{R} H_{r} \otimes \boldsymbol{m}_{r}, \quad \operatorname{rank}\left(H_{r}\right)=\operatorname{rank}\left(A_{r} B_{r}^{\top}\right)=L_{r}>0
$$

Special case: If $L_{r}=1$ for $1 \leq r \leq R$, we have a polyadic decomposition (PD).

Uniqueness based on rank profile

Definition

A $\left(L_{r}, L_{r}, 1\right)$-decomposition of $\mathcal{T} \in \mathbb{C}^{I \times J \times K}$ with rank profile $\left(L_{r}=\operatorname{rank} H_{r}\right)_{1 \leq r \leq R}$ is essentially unique if every other $\left(L_{r}, L_{r}, 1\right)$-decomposition

$$
\mathcal{T}=\sum_{r=1}^{R} H_{r}^{\prime} \otimes \boldsymbol{m}_{r}^{\prime}
$$

satisfying the rank profile constraints:

$$
\text { rank } H_{r}^{\prime}=L_{r}^{\prime} \leq L_{r}, \quad 1 \leq r \leq R
$$

is the same up to scaling and permutation ambiguity.

Uniqueness based on rank profile

Definition

A $\left(L_{r}, L_{r}, 1\right)$-decomposition of $\mathcal{T} \in \mathbb{C}^{I \times J \times K}$ with rank profile $\left(L_{r}=\operatorname{rank} H_{r}\right)_{1 \leq r \leq R}$ is essentially unique if every other $\left(L_{r}, L_{r}, 1\right)$-decomposition

$$
\mathcal{T}=\sum_{r=1}^{R} H_{r}^{\prime} \otimes \boldsymbol{m}_{r}^{\prime}
$$

satisfying the rank profile constraints:

$$
\text { rank } H_{r}^{\prime}=L_{r}^{\prime} \leq L_{r}, \quad 1 \leq r \leq R
$$

is the same up to scaling and permutation ambiguity.
Special case: Rank profile $\left(L_{r}=1\right)_{1 \leq r \leq R}$ returns uniqueness definition of the canonical polyadic decomposition (CPD).

Uniqueness properties of ($\left.L_{r}, L_{r}, 1\right)$-decomposition have direct application in the blind separation of sums of exponentials (BSSE) problem

Consider the linear observations

$$
y_{k}(t)=m_{k 1} s_{1}(t)+m_{k 2} s_{2}(t)+\ldots+m_{k R} s_{R}(t), \quad k=1, \ldots, K
$$

where:

$$
s_{r}(t)=\sum_{j=1}^{L_{r}} \alpha_{r, j} z_{r, j}^{t}, \quad 0 \leq t<T
$$

Uniqueness properties of ($\left.L_{r}, L_{r}, 1\right)$-decomposition have direct application in the blind separation of sums of exponentials (BSSE) problem

Problem

Given $Y \in \mathbb{C}^{K \times T}$, find the factorization:

$$
Y=M S
$$

where:

$$
Y:=\left[\begin{array}{ccc}
y_{1}(0) & \cdots & y_{1}(T-1) \\
\vdots & & \vdots \\
y_{K}(0) & \cdots & y_{K}(T-1)
\end{array}\right], \quad S:=\left[\begin{array}{ccc}
s_{1}(0) & \cdots & s_{1}(T-1) \\
\vdots & & \vdots \\
s_{R}(0) & \cdots & s_{R}(T-1)
\end{array}\right] .
$$

Uniqueness properties of ($\left.L_{r}, L_{r}, 1\right)$-decomposition have direct application in the blind separation of sums of exponentials (BSSE) problem

Define the tensor

$$
\mathcal{H}[Y](:,:, k)=H\left[y_{k}\right]:=\left[\begin{array}{cccc}
y_{k}(0) & y_{k}(1) & \cdots & y_{k}\left(T_{2}-1\right) \\
y_{k}(1) & y_{k}(2) & \cdots & y_{k}\left(T_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
y_{k}\left(T_{1}-1\right) & y_{k}\left(T_{1}\right) & \cdots & y_{k}\left(T_{1}+T_{2}-2\right)
\end{array}\right] .
$$

Problem is solved by recovering the $\left(L_{r}, L_{r}, 1\right)$-decomposition

$$
\mathcal{H}[Y]=\sum_{r=1}^{R} H\left[s_{r}\right] \otimes \boldsymbol{m}_{r}
$$

which is unique under mild assumptions.

A tensor may admit multiple "unique" $\left(L_{r}, L_{r}, 1\right)$-decompositions
Let

$$
A=\left[\begin{array}{llll}
\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \boldsymbol{a}_{3} & \boldsymbol{a}_{4}
\end{array}\right], \quad B=\left[\begin{array}{llll}
\boldsymbol{b}_{1} & \boldsymbol{b}_{2} & \boldsymbol{b}_{3} & \boldsymbol{b}_{4}
\end{array}\right], \quad M=\left[\begin{array}{ll}
\boldsymbol{m}_{1} & \boldsymbol{m}_{2}
\end{array}\right]
$$

be full column rank matrices.

$$
\begin{gathered}
\text { unique under rank profile }\left(L_{1}, L_{2}\right)=(2,3) \\
\begin{array}{c}
\left(\boldsymbol{a}_{1} \boldsymbol{b}_{1}^{\top}+\boldsymbol{a}_{2} \boldsymbol{b}_{2}^{\top}\right) \otimes \boldsymbol{m}_{1}+\left(\boldsymbol{a}_{2} \boldsymbol{b}_{2}^{\top}+\boldsymbol{a}_{3} \boldsymbol{b}_{3}^{\top}+\boldsymbol{a}_{4} \boldsymbol{b}_{4}^{\top}\right) \otimes \boldsymbol{m}_{2} \\
= \\
\left(\boldsymbol{a}_{1} \boldsymbol{b}_{1}^{\top}\right) \otimes \boldsymbol{m}_{1}+\left(\boldsymbol{a}_{2} \boldsymbol{b}_{2}^{\top}\right) \otimes\left(\boldsymbol{m}_{1}+\boldsymbol{m}_{2}\right)+\left(\boldsymbol{a}_{3} \boldsymbol{b}_{3}^{\top}+\boldsymbol{a}_{4} \boldsymbol{b}_{4}^{\top}\right) \otimes \boldsymbol{m}_{2}
\end{array}
\end{gathered}
$$

Constraints on the rank profile are unknowns in the BSSE problem

The Hankel tensor of the BSSE problem:
has two essentially unique $\left(L_{r}, L_{r}, 1\right)$-decompositions with rank profiles:

$$
(2,3) \text { and }(1,1,2)
$$

Constraints on the rank profile are unknowns in the BSSE problem

The Hankel tensor of the BSSE problem:
has two essentially unique $\left(L_{r}, L_{r}, 1\right)$-decompositions with rank profiles:

$$
(2,3) \text { and }(1,1,2)
$$

So... how should one know which rank profile must be used?

Dictionary representations: towards an alternative definition of uniqueness

Consider the ($L_{r}, L_{r}, 1$)-decomposition

$$
\mathcal{T}=H_{1 \otimes} \boldsymbol{m}_{1}+H_{2} \otimes \boldsymbol{m}_{2}, \quad H_{1}=\boldsymbol{u}_{1} \mathbf{v}_{1}^{\top}+\boldsymbol{u}_{2} \boldsymbol{v}_{2}^{\top}, \quad H_{2}=\boldsymbol{u}_{2} \boldsymbol{v}_{2}^{\top}+\boldsymbol{u}_{3} \mathbf{v}_{3}^{\top} .
$$

"Original representation" in terms of the triple (U, V, M), where:

$$
U=\left[\begin{array}{ll}
\boldsymbol{u}_{1} & \boldsymbol{u}_{2} \mid \boldsymbol{u}_{2} \\
\boldsymbol{u}_{3}
\end{array}\right], \quad V=\left[\begin{array}{ll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} \mid \boldsymbol{v}_{2} \\
\boldsymbol{v}_{3}
\end{array}\right], \quad M=\left[\begin{array}{ll}
\boldsymbol{m}_{1} & \boldsymbol{m}_{2}
\end{array}\right]
$$

Dictionary representations: towards an alternative definition of uniqueness
Consider the ($L_{r}, L_{r}, 1$)-decomposition

$$
\mathcal{T}=H_{1 \otimes} \boldsymbol{m}_{1}+H_{2} \otimes \boldsymbol{m}_{2}, \quad H_{1}=\boldsymbol{u}_{1} \mathbf{v}_{1}^{\top}+\boldsymbol{u}_{2} \boldsymbol{v}_{2}^{\top}, \quad H_{2}=\boldsymbol{u}_{2} \boldsymbol{v}_{2}^{\top}+\boldsymbol{u}_{3} \mathbf{v}_{3}^{\top} .
$$

Alternatively, we may express

$$
\begin{gathered}
H_{1}=\underbrace{\xi_{11}}_{=1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{\top}+\underbrace{\xi_{12}}_{=1} \boldsymbol{u}_{2} \boldsymbol{v}_{2}^{\top}+\underbrace{\xi_{13}}_{=0} \boldsymbol{u}_{3} \mathbf{v}_{3}^{\top}, \quad H_{2}=\underbrace{\xi_{21}}_{=0} \boldsymbol{u}_{1} \mathbf{v}_{1}^{\top}+\underbrace{\xi_{22}}_{=1} \boldsymbol{u}_{2} \boldsymbol{v}_{2}^{\top}+\underbrace{\xi_{23}}_{=1} \boldsymbol{u}_{3} \boldsymbol{v}_{3}^{\top} \\
\equiv=\left[\begin{array}{lll}
\xi_{11} & \xi_{12} & \xi_{13} \\
\xi_{21} & \xi_{22} & \xi_{23}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
\end{gathered}
$$

Dictionary representations: towards an alternative definition of uniqueness

Consider the $\left(L_{r}, L_{r}, 1\right)$-decomposition

$$
\mathcal{T}=H_{1} \otimes \boldsymbol{m}_{1}+H_{2} \otimes \boldsymbol{m}_{2}, \quad H_{1}=\boldsymbol{u}_{1} \mathbf{v}_{1}^{\top}+\boldsymbol{u}_{2} \mathbf{v}_{2}^{\top}, \quad H_{2}=\boldsymbol{u}_{2} \mathbf{v}_{2}^{\top}+\boldsymbol{u}_{3} \boldsymbol{v}_{3}^{\top} .
$$

This leads to the "Dictionary representation" in terms of the tuple (A, B, M, \equiv), where:

$$
A=\left[\begin{array}{lll}
\boldsymbol{u}_{1} & \boldsymbol{u}_{2} & \boldsymbol{u}_{3}
\end{array}\right], \quad B=\left[\begin{array}{lll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{v}_{3}
\end{array}\right], \quad M=\left[\begin{array}{ll}
\boldsymbol{m}_{1} & \boldsymbol{m}_{2}
\end{array}\right], \quad \equiv=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] .
$$

A uniqueness definition based on dictionary representation
Let (1)-(P) denote a list of properties satisfied by the matrices A, B, M, and \equiv.

$$
\mathscr{C}:=\quad \begin{aligned}
& \text { Collection of all }\left(L_{r}, L_{r}, 1\right) \text {-decompositions that admit a } \\
& \text { dictionary representation satisfying properties }(1)-(P) .
\end{aligned}
$$

Definition

A tensor $\mathcal{T} \in \mathbb{C}^{I \times J \times K}$ has a unique $\left(L_{r}, L_{r}, 1\right)$-decomposition satisfying properties (1)-(P) if any other $\left(L_{r}, L_{r}, 1\right)$-decomposition in \mathscr{C} that describes \mathcal{T} is the same up to scaling and permutation ambiguity.

A uniqueness definition based on dictionary representation
Let (1)-(P) denote a list of properties satisfied by the matrices A, B, M, and \equiv.

$$
\mathscr{C}:=\quad \begin{aligned}
& \text { Collection of all }\left(L_{r}, L_{r}, 1\right) \text {-decompositions that admit a } \\
& \text { dictionary representation satisfying properties }(1)-(P) .
\end{aligned}
$$

Definition

A tensor $\mathcal{T} \in \mathbb{C}^{I \times J \times K}$ has a unique $\left(L_{r}, L_{r}, 1\right)$-decomposition satisfying properties (1)-(P) if any other $\left(L_{r}, L_{r}, 1\right)$-decomposition in \mathscr{C} that describes \mathcal{T} is the same up to scaling and permutation ambiguity.

How can we derive uniqueness results with this new definition?

Introducing sparse component analysis (SCA)

- Let \mathcal{D} denote a set of "admissible" pairs $(M, \equiv) \in\left(\mathbb{C}^{K \times R}, \mathbb{C}^{R \times N}\right)$
- In SCA:
\mathcal{D} is defined through rank and sparsity constraints on M and $\overline{\text {, respectively. }}$
- Suppose that $C=M \equiv$ for some $(M, \equiv) \in \mathcal{D}$.

Problem:
Given $C \in \mathbb{C}^{K \times R}$, recover $C=M \equiv$ up to a scaling and permutation ambiguity

A mechanism to derive uniqueness results for $\left(L_{r}, L_{r}, 1\right)$-decompositions

Technical assumptions on admissible set \mathscr{D} :

(a) every $(M, \equiv) \in \mathscr{D}$ is proportionality-revealing,
(b) \mathscr{D} is scaled permutation invariant.

Lemma

(A, B, M, \equiv) is the unique $\left(L_{r}, L_{r}, 1\right)$ decomposition satisfying properties:
(1) A and B have full column rank,
(2) $(M, \equiv) \in \mathscr{D}$.

SCA: the intuition behind proving uniqueness of $C=M \equiv$

A 2-step constructive approach to unique recovery:

1. Recover the columns of $M \in \mathbb{C}^{K \times R}$ up to permutation and scaling ambiguity.
2. Recover $C \in \mathbb{C}^{R \times N}$ by solving

$$
M \boldsymbol{\xi}_{n}=\boldsymbol{c}_{n}, \quad n=1, \ldots N
$$

with \boldsymbol{c}_{k} subjected to "sparsity constraints"

SCA: the intuition behind proving uniqueness of $C=M \equiv$

Given a collection of subspaces of columns of M, when is it possible to all retrieve individual columns of M ?

Answer: when the "richness" property is satisfied + and M has sufficiently high Kruskal rank

SCA: the intuition behind proving uniqueness of $C=M \equiv$

Given sparsity constraints on $\overline{\text {, }}$, under what assumption can one decisively recover subspaces spanned by columns of M from subspaces spanned by columns of C ?

Answer: if the so-called "non-degeneracy" assumption is satisfied

This leads to the following new uniqueness result

Theorem

Given $A \in \mathbb{C}^{1 \times N}, B \in \mathbb{C}^{1 \times N}, M \in \mathbb{C}^{K \times R}$, and $\equiv \in \mathbb{C}^{R \times N}$, fix:

$$
2 \leq p \leq K, \quad m:=\left\lfloor\frac{p}{2}\right\rfloor .
$$

(A, B, M, \equiv) is the unique $\left(L_{r}, L_{r}, 1\right)$-decomposition satisfying properties:
(1) A and B have full column rank,
(2) rank constraint: k-rank $M \geq p$,
(3) sparsity constraint: 三 has no zero rows and ev-
\Longleftarrow 三 is sufficiently rich with parameter m. ery column of \equiv has at least one and at most m nonzero entries,
(4) (M, \equiv) is non-degenerate up to parameter m.

What does this mean for BSSE problem?
Interpretation of sparsity pattern in 三
Let $\left\{z_{n}\right\}_{n=1}^{N}$ be an enumeration of all the dinstinct poles in

$$
\begin{gathered}
\left\{z_{r, j}: 1 \leq r \leq R, 1 \leq j \leq L_{r}\right\} . \\
s_{r}(t)=\sum_{j=1}^{L_{r}} \alpha_{r, j} z_{r, j}^{t}, \quad 1 \leq r \leq R,
\end{gathered}
$$

What does this mean for BSSE problem?

Interpretation of sparsity pattern in 三
Let $\left\{z_{n}\right\}_{n=1}^{N}$ be an enumeration of all the dinstinct poles in

$$
\begin{gathered}
\left\{z_{r, j}: 1 \leq r \leq R, 1 \leq j \leq L_{r}\right\} \\
s_{r}(t)=\sum_{n=1}^{N} \xi_{r n} z_{n}^{t}, \quad 1 \leq r \leq R,
\end{gathered}
$$

What does this mean for BSSE problem?

Interpretation of sparsity pattern in 三
Let $\left\{z_{n}\right\}_{n=1}^{N}$ be an enumeration of all the dinstinct poles in

$$
\begin{gathered}
\left\{z_{r, j}: 1 \leq r \leq R, 1 \leq j \leq L_{r}\right\} \\
s_{r}(t)=\sum_{n=1}^{N} \xi_{r n} z_{n}^{t}, \quad 1 \leq r \leq R,
\end{gathered}
$$

nonzero entries in:

$$
\begin{aligned}
\text { rows of } \equiv & =\text { which poles are present in which source signal } \\
\text { columns of } \equiv & =\text { which poles are "shared" amongst which source signals }
\end{aligned}
$$

Under a mild technical assumption, a larger family of BSSE problems can be solved

$$
K=\text { number of observations, } \quad R=\text { number of source signals }
$$

$$
K<R
$$

poles must be distinct

$$
K \geq R
$$

poles can be shared

Under a mild technical assumption, a larger family of BSSE problems can be solved

$$
K=\text { number of observations, } \quad R=\text { number of source signals }
$$

$$
K<R
$$

poles can be shared
(provided non-degeneracy assumption)

$$
K \geq R
$$

poles can be shared

Contributions

- A new uniqueness result for $\left(L_{r}, L_{r}, 1\right)$-decompositions inspired from SCA principles.
- Direct application to BSSE, allowing for a richer set of problems to be solved.
- (not discussed) Numerical implications:

$$
\text { LL1 }=\mathrm{CPD}+\mathrm{SCA} \text { on third factor matrix. }
$$

Open question

So far, we have not been able to answer the following question:
If the richness property is not satisfied, can we conclude that the ($L_{r}, L_{r}, 1$)-decomposition is not unique?

Further details

Manuscript awaiting review in SIMAX:
$\left(L_{r}, L_{r}, 1\right)$-decompositions, Sparse Component Analysis, and the blind separation of sums of exponentials
N. Govindarajan, E. Epperly, L. De Lathauwer.

