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a b s t r a c t

This paper presents a sparse collocationmethod for solving the time-dependentHamilton–Jacobi–Bellman
(HJB) equation associated with the continuous-time optimal control problem on a fixed, finite time-
horizon with integral cost functional. Through casting the problem in a recursive framework using the
value-iteration procedure, the value functions of every iteration step is approximatedwith a time-varying
multivariate simplex B-spline on a certain state domain of interest. In the collocation scheme, the time-
dependent coefficients of the spline function are further approximatedwith ordinary univariate B-splines
to yield a discretization for the value function fully in terms of piece-wise polynomials. The B-spline co-
efficients are determined by solving a sequence of highly sparse quadratic programming problems. The
proposed algorithm is demonstrated on a pair of benchmark example problems. Simulation results in-
dicate that the method can yield increasingly more accurate approximations of the value function by
refinement of the triangulation.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In the design of modern control systems for applications in
aerospace, process, and automotive industry, ensuring optimality
with respect to some specified cost index is highly desired. Optimal
control theory is the field that dealswith the problemof finding op-
timal controls for dynamical systems in either open-loop, or more
preferably, closed-loop (i.e. feedback) form.

Within optimal control, the dynamic programming method is
widely regarded as the most comprehensive approach in finding
optimal feedback controllers for generic nonlinear systems. Over
the years, the subject has evolved into a broad field. However, a
limiting factor for thewidespread application of dynamic program-
ming algorithms today is the inherent computational intractabil-
ity of the method. This curse of dimensionality, as it was coined
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by Bellman (1957), has forced researchers to explore techniques
that can overcome the computational drawbacks. The common ap-
proach is to approximate the value function and optimal feedback
control with generic function approximators such as Neural Net-
works (NNs). In the literature, such approaches have come under a
variety of names: Adaptive Dynamic programming (Wang, Zhang,
& Liu, 2009), Approximate Dynamic Programming (ADP) (Powell,
2007), Neuro-Dynamic Programming (Bertsekas & Tsitsiklis, 1996),
and reinforcement learning (Sutton & Barto, 1998). Nevertheless,
there are several variations to the dynamic programming problem,
which broadly can be classified according to the type of dynam-
ics (i.e. discrete vs. continuous time, linear vs. nonlinear systems,
deterministic vs. stochastic systems) and optimization criteria (i.e.
finite vs. infinite horizon, quadratic vs. general nonlinear cost func-
tionals) the problems address. Much of the literature has been
mainly devoted to the discrete-time case with often infinite hori-
zon cost functions. Work in the continuous-time domain remains
fairly limited to a few publications (Abu-Khalaf & Lewis, 2005;
Beard, 1995; Cheng, Lewis, & Abu-Khalaf, 2007; Hanselmann,
Noakes, & Zaknich, 2007; Vamvoudakis & Lewis, 2009, 2010). Cen-
tral in dynamic programming is solving the Bellman equation of
optimality. In the continuous-time setting, this equation comes in
the form of a first-order hyperbolic PDE known as the Hamilton–
Jacobi–Bellman (HJB) equation.
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This paper focuses on the optimal control problem for a non-
linear, continuous-time, deterministic system with cost criteria
defined on a finite-horizon, also known generically as the Bolza
problem (Bardi & Capuzzo-Dolcetta, 2008). In contrast to the
infinite-horizon, the class of problems considered here give rise to
a time-dependent value function ofwhich the associatedHJB equa-
tion contains an additional partial derivative term with respect to
the time variable. TheHJB equation can be solved using the upwind
finite volumemethod inWang, Jennings, and Teo (2003). In Huang,
Wang, Chen, and Li (2006), a collocation method was developed to
solve the sameHJB equation using Radial Basis Functions (RBFs). In
Alwardi, Wang, Jennings, and Richardson (2012), this method was
extended with an adaptive scheme that refines the distribution of
the RBF centers bymeans of feeding back the approximation error.
In parallel, Cheng et al. (2007) presented a nearly identical scheme
for a special case of the problem in Huang et al. (2006) where the
system is input affine, the cost functional is positive definite on the
state and input, and the input space is unbounded. In the collo-
cation method, the aim is to determine appropriate weights for a
given set of trial functions, such that the PDE is satisfied exactly at
a certain carefully selected points spanning the computational do-
main. As opposed to finite difference methods which approximate
the solution of a PDE only at a discrete set of points, the colloca-
tion method finds an approximation for the entire computational
domain.

Regardless, a limitation of previous work is that only the state-
dependent part of the value function is approximated with a
collocation-like procedure. The temporal variable on the other
hand, is discretized in the ordinary fashion using finite differ-
ence approximations, resulting in a scheme which is only semi-
meshless in nature. In the interest of designing optimal feedback
controllers, a full state and time parametrization of the value
function in terms of smooth functions is desirable. In such a
parametrization, the gradient of value function can be evaluated
analytically for any time instance, and if the argument that opti-
mizes the Hamiltonian can be expressed explicitly in terms of this
gradient, closed-form expressions can be obtained for the (time-
dependent) optimal feedback control-law.

There are two major complications that accompany a full state
and time discretization of the time-dependent HJB equation in
terms of smooth functions: (i) selection of an effective approx-
imation structure which complies with the underlying physics
of the PDE and handles the PDE boundary conditions effectively,
(ii) computing values for the approximation coefficients by solv-
ing the resulting nonlinear optimization problem, which typically
is also non-smooth if the optimal feedback control-law consist of a
switching structure. In this paper, we show that by: (i) introducing
a specific hybrid between a tensor and simplex B-spline, (ii) apply-
ing a value-iteration like procedure, we can effectively deal with
both of these complications, respectively.

The contribution of this paper is a new collocation method that
fully discretizes both the state and time components of the HJB
equation in terms of smooth functions. Given the evolutionary na-
ture of the underlying PDE,wepresent a scheme that approximates
the value function with a time-varying simplex B-spline. By suc-
cessively approximating the time-dependent B-coefficients with
univariate B-spline functions, we end up with a discretization for
the value function in terms of piecewise polynomials. By means
of employing a value-iteration procedure, the unknown B-spline
coefficients are determined by solving a sequence of least-squares
problems with equality constraints. The validity of using this pro-
cedure in the overall approximation scheme is supported with a
theorem that states convergence for the corresponding theoreti-
cal procedure. The entire method is illustrated on two benchmark
examples. Simulation results indicate that high accuracy approxi-
mations of the value function can be obtained for relatively simple
spline function configurations.
The proposed method makes explicit use of the multivariate
simplex B-spline as a function approximator. The simplex B-spline
can be considered as the natural generalization of the univariate
B-spline to the multivariate case (de Boor, 1987; Lai & Schumaker,
2007). From a numerical standpoint, we establish a sound argu-
ment for using this specific spline function in the proposed ap-
proximation scheme. We show by means of a complexity analysis
that the B-spline method has favorable properties in terms of both
space and time complexity. These favorable properties arise from
domain decomposition and the resulting sparse structure in the
quadratic program. Domain decomposition techniques were used
in the RBF based method of Alwardi, Wang, and Jennings (2013)
to reduce complexity of the problem. It suffices that the use of B-
splines naturally decomposes the domain of the specified prob-
lem, where every sub-problem associated with every sub-domain
is combined into one consistent solution by means of linear equal-
ity constraints on the B-coefficients. Furthermore, the inclusion
of some trivial additional equality constraints allows us to effec-
tively deal with the PDE boundary conditions, which represents
another choice for the B-spline based architecture. The multivari-
ate simplex B-spline presented in the form given in this paper has
been used in the past to find numerical solutions for elliptic PDEs
(Awanou & Lai, 2004), and also specific cases of the Navier–Stokes
equations (Awanou, Lai, & Wenston, 2005; Hu, Han, & Lai, 2007).
Yet, these are all problems which are static in nature, and there-
fore do not involve an evolving time parameter. In any case, to the
best of the authors knowledge, the versatility of simplex B-splines
in solving HJB equations has never been formally explored in the
literature, and hence is considered a novelty by itself.

The paper is organized as follows. Section 2 provides back-
ground on the optimal feedback control problem, and reflects on
several aspects concerning the HJB equation, and value-iteration.
Section 3 introduces readers to the multivariate simplex B-spline.
Section 4 presents the main contributions of this paper in which
the details of the collocation method are discussed. Section 5 dis-
cusses the computational complexity of the B-spline method. Sec-
tion 6 presented numerical results obtained for two benchmark
example problems. Section 7 states the conclusions of the paper.

2. Problem statement and background on optimal control

This section discusses the details of the optimal control prob-
lem. We introduce here also the value-iteration procedure which
will be used in the overall scheme to approximate the solution of
the HJB equation.

2.1. Problem formulation

Consider a generic nonlinear dynamical system

ẋ = f (x, u) (1)

with x ∈ Rn, u ∈ U ⊆ Rm, and f : Rn
× U → Rn a Lipschitz con-

tinuous function. Let ψ (τ ; x, t, u (·)) denote the unique state tra-
jectory of the system (1) at the time interval τ ∈ [t, T ] for a given
initial state x at initial time t , and a control signal u (·) ∈ U[t,T ],
where

U[t,T ] := {u (·) : [t, T ] → U | u (·) is measurable} .

The objective in the finite-horizon optimal control problem is to
find a controlu (·) ∈ U[t,T ] that results in a system trajectoryψ (·) :

[t, T ] → Rn which minimizes a specific cost functional over a
fixed, finite horizon. The goal is to find

V (t, x) := inf
u(·)∈U[t,T ]

 T

t
r [ψ (τ ; x, t, u (·)) , u (τ )] dτ

+ l [ψ (T ; x, t, u (·))] (2)
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where r : Rn
× Rm

→ R and l : Rn
→ R are continuous func-

tions that denote respectively the running and terminal cost. The
function V : [0, T ] × Rn

→ R in (2) is known in the literature as
the value function, and it plays an essential role in the synthesis of
optimal feedback controllers.

2.2. The Hamilton–Jacobi–Bellman equation

The value function (2) has an optimal substructure as it satisfies
Bellman’s principle of optimality (Bardi & Capuzzo-Dolcetta, 2008).
In infinitesimal form, this optimality condition is expressed in the
form of a PDE

∂V (t, x)
∂t

+ inf
u∈U

H


x,

∂V (t, x)
∂x

, u


= 0 (3)

with V (T , x) = l (x) as the boundary condition, andH : Rn
×Rn

×

Rm
→ R the Hamiltonian defined by

H (x, p, u) := ⟨p, f (x, u)⟩ + r (x, u) (4)

where ⟨·, ·⟩ denotes the inner product. The first-order hyperbolic
PDE in (3) is termed the Hamilton–Jacobi–Bellman (HJB) equa-
tion and is essentially nonlinear because of the optimization of
the Hamiltonian (4). Classical solutions rarely exist for this class
of PDEs. In Bardi and Capuzzo-Dolcetta (2008) it has been shown
that, although (2) is continuous, it may not be differentiable every-
where. This holds true even for simple caseswhere (1) is linear, and
r, l are smooth.2 Consequently, for the general case, (2) can satisfy
(3) only in an appropriate weak sense. It has been shown by Bardi
and Capuzzo-Dolcetta (2008) that this weak solution comes in the
form of viscosity solutions. The viscosity solution is unique to (3)
and satisfies the PDE in the classical sense wherever (2) is differ-
entiable. On the other hand, wherever (2) is not differentiable, it
suffices that the super- and sub-differentials of the viscosity solu-
tion meet certain inequalities at that point (Crandall, Evans, & Li-
ons, 1984).

In the synthesis of optimal feedback controllers, wherein opti-
mality is encoded in terms of r and l, solving (3) is the main issue.
This fact is brought to light by rewriting (3) into the form

∂V (t, x)
∂t

+ H


x,

∂V (t, x)
∂x

, g∗ (t, x)


= 0 (5)

where g∗
: [0, T ]× Rn

→ U is a time-dependent feedback control
that optimizes the Hamiltonian

g∗ (t, x) := arg inf
u∈U

H


x,

∂V (t, x)
∂x

, u


. (6)

The function g∗ can be seen as an optimal feedback control-law
for the system (1). Note that this control-law may not be unique,
as there might exist multiple controllers that optimize (4). A triv-
ial example of an optimal control problem with non-unique opti-
mal feedback controllers is the case where: f (x, u) = −x+ uwith
u ∈ [−1, 1] , r (x, u) = 0, and l (x) = −x2. Indeed, it can be verified
that optimal control at x = 0 ismultivalued, i.e. g∗ (t, 0) ∈ {1, −1}.

For most problems, it is very difficult to construct an analytic
solution for (5). In most cases, one must resort to numerical tech-
niques that approximate the solution, such as the finite difference
methods that go under the name of level setmethods (Osher & Fed-
kiw, 2003). Furthermore, note that when (1) is linear, r is quadratic
with respect to x and u, l (x) = 0, and U = Rm, (3) can be re-
duced to the well-known Riccati differential equation of the Linear
Quadratic Regulator (LQR) problem.

2 See also example I in Section 6.1 for a trivial optimal control problemwith non-
smooth solution.
2.3. Value-iteration

The task of finding an optimal feedback law (6) and solving
the terminal value problem (3) are two interrelated problems. The
interdependency between these two problems can be decoupled
by introducing a successive approximation algorithm.

Procedure 1 (Value-Iteration). Initialize V (0) (t, x) = l (x). Perform
the following iteration:

1. Define

g (i) (t, x) := arg inf
u∈U

H


x,

∂V (i−1) (t, x)
∂x

, u


. (7)

2. Find V (i), which is the solution of

∂V (i) (t, x)
∂t

+ H


x,

∂V (i) (t, x)
∂x

, g (i) (t, x)


= 0 (8)

with V (i) (T , x) = l (x).

In the form presented, the above recursion essentially describes a
value-iteration procedure for the finite-horizon, continuous-time
and continuous-state optimal control problem. At every iteration
cycle, an updated value function is obtained by (8), which is then
used to define a new feedback control-law (7) for the system. The
expectation is that the recursive updating of the value functionwill
converge to (2). In Saridis and Lee (1979) an extensive proof was
developed for the convergence of Procedure 1 when: f (x, u) =

f1 (x) + Bu, r (x, u) = L (x) + ∥u∥
2 with L (x) ≥ 0, and l (x) ≥ 0.

Although not proven explicitly in the paper, Saridis and Lee (1979)
stated that the convergence results are generalizable for the class
of problems where: f (x, u) and r (x, u) form a convex set for u ∈

U, and l (x) is nonexistent. We will show in the following theo-
rem that, under certain conditions, we can extend this conver-
gence statement for themore general case considered in this paper,
wherein the cost functional also contains a terminal cost, i.e.
l (x) ≠ 0.

Theorem 1 (Convergence Value-Iteration Proc.). Consider the opti-
mal control problem defined in Section 2.1. Assume that:
(i) The input set U is a convex set;
(ii) For all x ∈ Rn, the function f (x, ·) : U → Rn is a convex func-

tion, componentwise;
(iii) For all x ∈ Rn, the function r(x, ·) : U → R is a convex function;
(iv) The function l : Rn

→ R is continuously differentiable, and the
function


∂ l(x)
∂x , f (x, ·)


: U → R is convex.

Then the sequence

V (i), i ∈ 1, 2, . . .


defined in Procedure 1 is

monotonically decreasing for every (t, x) ∈ [0, T ] × Rn, and satisfies

lim
i→∞

V (i) (t, x) = V (t, x) , ∀ (t, x) ∈ [0, T ] × Rn.

Proof. To prove the theorem, let us introduce the augmented
running cost

r̃ (x, u) := r (x, u) +


∂ l (x)
∂x

, f (x, u)


so that we can define an augmented value function

Ṽ (t, x) := inf
u(·)∈U[t,T ]

 T

t
r̃ [ψ (τ ; x, t, u (·)) , u (τ )] dτ . (9)

By assump. (iv), note that r̃ (x, ·) : U → R is a convex function,
and hence, according to Saridis and Lee (1979)3 we can claim for

3 Refer to Theorem 4 and comments provided at the end of Section 2.
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every (t, x) ∈ [0, T ] × Rn that

Ṽ (i) (t, x) ≤ Ṽ (i−1) (t, x) (10)

and

lim
i→∞

Ṽ (i) (t, x) = Ṽ (t, x) . (11)

The key idea behind the proof is to show that Ṽ (t, x) = V (t, x) −

l (x), and that Ṽ (i) (t, x) = V (i) (t, x) − l (x). Then the claims made
in the theorem directly follow from substitution of the results into
(10) and (11).

We proceed by showing that these relations hold through ex-
amining the difference between (2) and (9), i.e. we define S :=

V − Ṽ . By the definition of the value function, we have that

S (t, x) := inf
u(·)∈U[t,T ]

 T

t
−


∂ l [ψ (τ ; x, t, u (·))]

∂x
,

× f [ψ (τ ; x, t, u (·)) , u (·)]

dτ

+ l [ψ (T ; x, t, u (·))] . (12)

By evaluating the Hamiltonian (4) of (12) at the boundary condi-
tion: S (T , x) = l (x), we obtain that

H


x,

∂S (T , x)
∂x

, u


=


∂ l (x)
∂x

, f (x, u)


−


∂ l (x)
∂x

, f (x, u)


= 0.

Furthermore, by (3), it follows that

∂S (T , x)
∂t

= − inf
u∈U

H


x,

∂S (T , x)
∂x

, u


= 0.

Because the Hamiltonian vanishes at the boundary condition,
∂S(t,x)

∂t = 0 for all t ∈ [0, T ]. This implies that S (t, x) = S (T , x) =

l (x), and therefore, Ṽ (t, x) = V (t, x) − l (x).
Next, let us consider the sequence


S(i), i ∈ 1, 2, . . .


, as de-

fined by Procedure 1where S(i) := V (i) − Ṽ (i). On a similar note, we
can verify that ∂S(i)(t,x)

∂t = 0. Consequently, S(i) (t, x) = l (x), which
implies that Ṽ (i) (t, x) = V (i) (t, x) − l (x). �

The value function (2) can be computed by either directly solv-
ing the nonlinear PDE (3), or approximating it in the limit by
solving the sequence of PDEs in Procedure 1. In the proposed ap-
proximation scheme, we follow the latter approach for certain
solid reasons. Through introduction of Procedure 1, the optimiza-
tion of the Hamiltonian term is eliminated from the HJB equation,
conversely turning (5) into a linear PDE in (8). Later in Section 4,
we show that this ‘linearization’ will allow us to introduce a col-
location scheme that uses B-spline functions to approximate both
the state and time dependent parts of the value function. The in-
troduction of the value-iteration procedure circumvents the need
to solve a complex nonlinear and non-smooth optimization prob-
lem, by turning it respectively into a sequence of quadratic pro-
grams. Additionally, the procedure also introduces an adaptive
critic framework (Wang et al., 2009) for the finite-horizon optimal
control problem, wherein the value-iteration cycle can be used as
an update-step for the optimal feedback control law for systems
with parametric uncertainties or slowly changing dynamics.

3. Preliminaries on multivariate simplex B-splines

This section provides an introduction into the theory of multi-
variate simplex B-splines. Themachinery developed in this section
will be necessary for the treatment of the collocation method in
Section 4. Only the bare essentials of the theory is discussed, amore
complete account on the subject can be found in Lai and Schumaker
(2007).

3.1. Simplices, triangulations, and the barycentric coordinate system

A simplex B-spline is a piecewise polynomial function defined
over a special geometric structure called a triangulation. A triangu-
lation T is a special partitioning of a polytopic domain in Rn into
a set of J simplices which are either disjoint, or share a common
facet. Hence, if we let ∆ denote an n-simplex formed by the con-
vex hull of n+1 non-degenerate vertices v0, v1, . . . , vn ∈ Rn, then
a triangulation can be defined as

T :=

J
i=1

∆i, ∆i ∩ ∆j ∈

∅, ∆̃


, ∀i ≠ j (13)

where ∆̃ is a k-simplex with 0 ≤ k ≤ n − 1.
For every simplex in the triangulation, a separate local coordi-

nate system can be defined in terms of barycentric weights. In this
barycentric coordinate system, every point x ∈ Rn is uniquely rep-
resented by a vector b := (b0, b1, . . . , bn) ∈ Rn+1, whose elements
denote the normalized weights that decompose x in terms of the
simplex vertices, i.e.

x =

n
i=0

bivi,
n

i=0

bi = 1.

In the remainder of this paper, we denote β∆j
: Rn

→ Rn+1 as the
function describing the mapping from Cartesian to barycentric co-
ordinates for a specific simplex ∆j ⊆ T .

3.2. The B-form polynomial

In the simplex B-spline, the polynomials in every simplex of the
triangulation are expressed in B-form (de Boor, 1987). The B-form
polynomial of degree d is defined as

p∆j (x) :=


|κ|=d

c
∆j
κ Bd

κ(β∆j
(x)) (14)

where κ = (κ0, κ1, . . . , κn) ∈ Nn+1 is a multi-index with |κ| =

κ0 + κ1 + · · · + κn. In (14), the term Bd
κ(β∆j

(x)) denotes the
individual basis polynomial (de Visser & Verhaegen, 2013)

Bd
κ(β∆j

(x)) :=


d!

κ0!κ1! · · · κn!
bκ0
0 bκ1

1 · · · bκn
n , x ∈ ∆j

0, otherwise.

Note that the polynomial terms Bd
κ(β∆j

(x)) can attain a non-zero
value onlywhen x ∈ ∆j. Consequently, the B-formpolynomial (14)
has a local support, which is defined only for the simplex ∆j ⊆ T .
Outside of this simplex, the function is cut-off and becomes zero.
The total number of individual basis polynomials in the summation
of (14), denoted by d̂, equals the number of valid permutations for
|κ| = d

d̂ =
(d + n)!
n!d!

. (15)

For convenience of notation, we express (14) in the vectorized
notation (de Visser, Chu, & Mulder, 2009)

p∆j (x) := Bd
∆j

(x) c∆j . (16)

In the vectorized notation, the B-coefficients c∆j ∈ Rd̂×1 and row
vector of the basis polynomialsBd

∆j
∈ R1×d̂ are constructed by sort-

ing the summation terms in (14) lexicographically. Furthermore,
de Boor (1987) showed that (14) represents a unique basis for the
polynomial space Pn

d .
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3.3. The simplex B-spline

Approximating functions by pure polynomial interpolation is
not a recommended practice. Apart from the susceptibility to un-
wanted oscillations (i.e. Runge’s phenomenon), one often needs to
deal with dense regression matrices. These drawbacks of polyno-
mials can be overcome by using piecewise polynomials, or spline
functions, as a replacement. In the multivariate simplex B-spline,
the local polynomials function are expressed in B-form (14), and
are defined over the simplices of the triangulation. To enforce a
certain order of smoothness m among all sub-domains of the tri-
angulation, the B-coefficients of every local polynomial functions
need to satisfy a certain number of R∗ unique, inter-simplex, ho-
mogeneous equality constraints. These constraints are given by

Hc = 0 (17)

where H ∈ RR∗
×J·d̂ is the smoothness matrix defined in de Visser

et al. (2009) and Lai and Schumaker (2007), and c ∈ RJ·d̂×1 is the
global vector of B-coefficients

c :=


c∆1⊤

· · · c∆J ⊤
⊤

. (18)

We formulate the following definition for the simplex B-spline.

Definition 1 (Simplex B-Spline). Let T be a triangulation of the
polytopic domain Ω ⊂ Rn into J simplices. A simplex B-spline of
degree d ≥ 1, and continuity order m ≥ 0, is a function sT ,m

d :

Ω → R, such that

sT ,m
d (x) := Bd

gl(x)c (19)

where c ∈ RJ d̂×1 satisfies (17), and Bd
gl (x) ∈ R1×J d̂ is the global

vector of basis polynomials given by

Bd
gl (x) :=


01×(j−1)d̂ Bd

∆j
(x) 01×(J−j)d̂


, x ∈ ∆j.

The spline function sT ,m
d is uniquely defined in terms of the

B-coefficients vector (18). The B-coefficients have a geometric in-
terpretation in terms of the so-called B-net. Associated with ev-
ery B-coefficient is a spatial location in which the corresponding
B-form polynomial term has a maximum influence. Small pertur-
bations of individual B-coefficients lead to only local changes in the
function in the neighborhood around the associated spatial posi-
tion. The spatial position correspond to the domain points of the
B-form polynomial (de Boor, 1987). In barycentric coordinates,
these points are found by

bκ =
κ

d
, |κ| = d. (20)

In Fig. 1, the domain points are shown for a bivariate spline func-
tion of degree 3.

Lai and Schumaker (2007) have shown that the B-form poly-
nomial evaluated at a domain point positioned on a simplex edge
equals the value of the B-coefficient of that domain point. Later in
Section 4, it will become evident that this specific property will al-
low us to deal with the PDE boundary conditions in a very straight-
forward manner.

3.4. B-spline derivatives

The function sT ,m
d ∈ Cm (Ω) is guaranteed to be m-times dif-

ferentiable on the domain Ω . In this paper, we are interested in
determining the first-order partial derivatives of (19). Using the
formulation in deVisser, Chu, andMulder (2011) for the directional
derivatives, the partial derivative of the B-form polynomial p∆j(x)
Fig. 1. The domain points for a 3rd degree spline function on a triangulation
consisting of three triangles: ∆i, ∆j and ∆k .

with respect to xk (k = 1, . . . , n) at a given x ∈ ∆j, can be deter-
mined by evaluating

∂p∆j(x)
∂xk

=

Bd
∆j

(x)

∂xk
c∆j (21)

where
Bd

∆j
(x)

∂xk
:=

d!
(d − 1)!

Bd−1
∆j

(x) Pd,d−1(ak) ∈ R1×d̂

with Pd,d−1(a) ∈ R
(d−1+2)!
2(d−1)! ×d̂ the de-Casteljau matrix of degree d

to d − m from de Visser et al. (2011), and ak the directional coor-
dinate of the unit vector e⃗k in barycentric coordinates, i.e. ak :=

β∆j


e⃗k

− β∆j

(0). We denote the spline partial derivatives by

∂sT ,m
d (x)
∂xk

=
∂Bd

gl(x)
∂xk

c, k = 1, . . . , n (22)

with
∂Bd

gl(x)
∂xk

:=


0(j−1)×d̂

Bd
∆j

(x)

∂xk
0(J−j)×d̂


∈ R1×J d̂.

4. The collocation method

In this section, we present a collocation method that approx-
imates the solution of (8) fully in terms of spline functions. The
method that we lay out in this section is presented in a very gen-
eral framework that directly can be applied on any bounded, n-
dimensional polytopic domain Ω ⊂ Rn which is decomposable
into a triangulation.

4.1. A full state and time parametrization of the value function

Our motivation to use polynomial-type basis functions in the
discretization is supported by thewell-knownWeierstrass approx-
imation theorem. Since (8) describes a continuous surface that
evolves continuously over time, there exists a complete set of poly-
nomials


φj (x)

∞

j=1 such that

V (i) (t, x) = l (x) +

∞
j=1

φj (x) c
(i)
j (t) (23)

with c(i)
j (t) : [0, T ] → R as time-dependent coefficients. To find

a suitable parametrization for the value function in terms of only
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constant coefficients, we further express the continuous functions
c(i)
j (t) by

c(i)
j (t) =

∞
k=1

ϕk (t) c(i)
jk (24)

with {ϕk (t)}∞k=1 a complete polynomial basis w.r.t. the time vari-
able. By substitution of (24) into (23), we obtain a parametrization
for the value functionwhich complieswith the evolutionary nature
of the underlying PDE. This parametrization of the value function
in terms of only constant coefficients takes the form

V (i)(t, x) =

∞
j=1

∞
k=1

φj (x) ϕk (t) c(i)
jk . (25)

4.2. The spline-based approximate solution

Given the computational and numerical benefits of spline func-
tions over regular polynomials, we suggest to approximate V (i)

along the same lines as (23) using

V (i)
apprx


t, x; c(i) (t)


= l (x) + Bdx

gl (x)c
(i) (t) (26)

where Bdx
gl (x) ∈ R1×Jx d̂x is the global vector of basis functions as-

sociated to the (spatial) simplex B-spline sTx,mx
dx : Ω → R of de-

gree dx, triangulation Tx consisting of Jx simplices, and continuity
order mx. Note that we deliberately add the terminal cost l (x) to
the approximation in (26), so that the boundary condition of (8) is
satisfied by construction when setting c(i) (T ) = 0.

Substituting (26) into (8) yields the differential equation

e(i)(t, x) = Bdx
gl (x)ċ

(i) (t) +


n

k=1


∂Bdx

gl (x)
∂xk

c(i) (t) +
∂ l (x)
∂xk


× fk


x, g (i)

apprx


t, x; c(i−1) (t)


+ r


x, g (i)

apprx


t, x; c(i−1) (t)


(27)

where g (i)
apprx


t, x; c(i−1) (t)


is given by

g (i)
apprx


t, x; c(i−1) (t)


= arg inf

u∈U
H

×


x,

∂V (i−1)
apprx


t, x; c(i−1) (t)


∂x

, u


. (28)

In addition to (27), the following smoothness conditions (17) need
to be satisfied for all t ∈ [0, T ]

Hxc(i) (t) = 0, Hx ∈ RR∗
x×Jx·d̂x . (29)

Previous work (Cheng et al., 2007; Huang et al., 2006) focused on
integrating (27) backwards in time using ordinary finite difference
approximations. In this paper, we propose to discretize (27) fur-
ther among the lines of (24) and (25) by replacing the coefficients
with univariate B-spline functions. Proceeding in this direction
results in an approximation of V (i) fully in terms of piecewise-
polynomial functions. Using a tensor product notation, we express
the B-coefficients by

c(i) (t) =


IJx d̂x ⊗ Bdt

gl (t)

C (i) (30)

where Bdt
gl (t) ∈ R1×Jt d̂t is the global vector of basis functions as-

sociated to the (temporal) simplex B-spline sTt ,mt
dt : [0, T ] → R of
Fig. 2. Geometric interpretation of the time-varying spline for the triangulation of
Fig. 1 with triangles: ∆x

i , ∆x
j and ∆x

k . The temporal variable is discretized using a
2nd degree spline function consisting of two sub-intervals: ∆t

u , and ∆t
v .

degree dt , triangulation Tt consisting of Jt simplices, and continu-
ity order mt . The following smoothness conditions need to also be
satisfied

IJx d̂x ⊗ Ht


C (i)

= 0, Ht ∈ RR∗
t ×Jt ·d̂t . (31)

Substituting (30) into (26), we obtain

V (i)
apprx


t, x; C (i)

= l (x) +


Bdx
gl (x) ⊗ Bdt

gl (t)

C (i). (32)

The expanded coefficient vector: C (i) ∈ RJx d̂xJt d̂t×1 has to satisfy
smoothness conditions that arise from both the spatial spline func-
tion sTx,mx

dx , and temporal spline functions sTt ,mt
dt . The smoothness

conditions are

HglobalC (i)
= 0, Hglobal :=


Hx ⊗ IJt d̂t
IJx d̂x ⊗ Ht


(33)

with Hx and Ht defined in (29) and (31), respectively.
Apart from the smoothness conditions, (32) must also satisfy

the boundary condition of (8), which is enforced through setting
c

∆jx
κx (T ) = 0. Since the value of a B-form polynomial function at a
vertex point equals the value of the B-coefficient positioned at that
vertex point, the unique properties of the simplex B-spline requires
us to simply set all the B-coefficients positioned at the terminal time
equal to zero. We denote these conditions by the expression

GC (i)
= 0 (34)

where G ∈ RJx d̂x×Jx d̂xJt d̂t is highly sparse.
The second term in (32) can be interpreted as a hybrid be-

tween a tensor and simplex spline. Geometrically, this is a spline
function defined on a partitioning of a domain [0, T ] × Ω into
(n+1)-dimensional prismatic polytopes. The simplex spline and its
B-coefficients are basically extruded onto an extra dimension rep-
resenting the temporal nature of the function. For the bivariate
case, this expansion will yield a structure of triangular prisms. In
Fig. 2 we visualize this prismatic structure for the triangulation
shown in Fig. 1.

The resulting hybrid architecture originates from the para-
metrization of the value function in (25). The suitability of (32) as
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a candidate solution for (8) is hence supported with the argument
that the chosen approximation structure complies with the under-
lying physics of the PDE.

4.3. Formulation as a quadratic program

Direct substitution of (32) into (8) yields the residual error

e(i) (t, x) = α

t, x; C (i−1) C (i)

+ β

t, x; C (i−1) (35)

where

α

t, x; C (i−1)

= Bdx
gl (x) ⊗

dBdt
gl (t)

dt

+

n
k=1

fk

x, g (i)

apprx


t, x; C (i−1)

×


∂Bdx

gl (x)
∂xk

⊗ Bdt
gl (t)


(36)

β

t, x; C (i−1)

= r

x, g (i)

apprx


t, x; C (i−1)

+

n
k=1

fk

x, g (i)

apprx


t, x; C (i−1) ∂ l (x)

∂xk
. (37)

The residual error of (35) is an affine function in terms of the coef-
ficient vector: C (i). The affine relationship is an immediate conse-
quence of the application of Procedure 1. If value-iteration was not
used in the overall approximation scheme, then C (i−1) = C (i) = C ,
and the residual error will have a nonlinear relationship w.r.t. the
approximation coefficients.Moreover, the relationshipmay also be
non-smooth, since g (i)

apprx is often a discontinuous function of the
approximation coefficients.

In any case, we apply the method of weighted residuals (Fin-
layson, 1972) to determine an estimate for C (i), such that the resid-
ual error (35) is forced to zero in some average sense, i.e. T

0


Ω

w (t, x) e(i) (t, x) dxdt = 0 (38)

with w (t, x) :=

w1 (t, x) · · · wN (t, x)

T a vector of prese-
lected weighting functions. Depending on the choice of w (t, x),
various sub-methods can be formulated (e.g. Galerkin, least-
squares, collocation, sub-domain).

In the collocation scheme, the weighting functions are chosen
to be Dirac delta functions displaced to various ‘collocation points’
spanning the computational domain. Let N = NtNx, and consider
the functions

δx (x) :=


δ (x − x1)
δ (x − x2)

...

δ

x − xNx


 , δt (t) :=


δ (t − t1)
δ (t − t2)

...

δ

t − tNt


 .

By setting w (t, x) = δt (t) ⊗ δx (x), (38) can be re-written to T

0
δt (t) ⊗


Ω

δx (x) e(i) (t, x) dx

dt = 0. (39)

By the property:


δ(x − a)f (x)dx = f (a), we have that


Ω

δx (x) e(i) (t, x) dx =


e(i)(t, x1)
e(i)(t, x2)

...

e(i)(t, xNx)

 . (40)

In effect, (39) breaks-down to setting the residual error (35) equal
to zero at the collocation points

e(i) tj, xk = 0, j = 1, 2, . . . ,Nt
k = 1, 2, . . . ,Nx.

(41)
Based on (27), we may view (40) as a system of first-order, linear
ODEs. Henceforth, (39) can be interpreted as solving a system of
ODEs through collocation. Apart from the conditions (41), we also
need to ensure that (32) satisfies the smoothness conditions (33)
and boundary conditions (34). Collectively, the conditions (41),
(33), and (34) are embedded into an optimization problem where
the objective is to minimize the squared sum of the residuals. We
have the quadratic program

minimize J(C (i)) := ∥AC (i)
− β∥

2
2

subject to: HglobalC (i)
= 0, GC (i)

= 0
(42)

where
A := [α(tj, xk; C (i−1))]

Nt ,Nx
j=1,k=1,

and
β := [β(tj, xk; C (i−1))]

Nt ,Nx
j=1,k=1.

4.4. Summary of the algorithm

To summarize the overall approximation scheme, we end up
with the following algorithm.

Algorithm 1. Initialize Ĉ(0) = 0, and set ϵ > 0. Repeat the follow-
ing steps:
1. Approximate (7) with g (i)

apprx(t, x; Ĉ(i−1)).
2. Solve quadratic program (42) and set Ĉ(i) := argmin J(C (i)).

Until ∥ Ĉ(i) − Ĉ(i−1) ∥∞ < ϵ.

Note that Theorem 1 does not immediately imply convergence for
Algorithm 1 as approximations errors can successively propagate
into the next iteration cycle, and cause a divergence. A necessity is
to thus have sufficient approximation power in the overall spline
discretization. Lai and Schumaker (2007) have shown that the
simplex B-spline can approximate any smooth function lying in a
Sobolev space. Regardless, the ability to approximate (26) strongly
depends also on the chosen weighted-residual method. In the
collocation approach, convergent behavior is difficult to prove and
depends strongly on the selection of the collocation points.

In the temporal dimension, a good choice is to take

tj
Nt
j=1 ∈

[0, T ] as the Gaussian points (i.e. the roots of dt th Legendre poly-
nomial) relative to each sub-interval of Tt . We support this choice
with results in de Boor and Swartz (1973) which show that a mth
order differential equation can be approximated under this distri-
bution of points with order O(

∆t
max

m+dt
), where

∆t
max

 denotes
the length of largest subinterval in Tt . In the spatial dimension, the
choice of collocation points is harder to justify. In the presentwork,
we take {xk}

Nx
k=1 ∈ Ω to be the domain points (20).

Given the current scope of the paper, no rigorous convergence
proofs are available for Algorithm 1. However, simulation result,
as will be provided in Section 6, are promising and suggest that
further development of such algorithms is worthwhile.

5. Complexity of the B-spline method

The computational complexity of the proposed method is dic-
tated by the complexity of the quadratic program (42). In this sec-
tion, we analyze the computational complexity of the proposed
B-spline method. More specifically, we show that, when compared
to a RBF based discretization, a B-spline based approximation
structure leads to more favorable properties in both space-
complexity and time-complexity.

5.1. Space-complexity

In a spline based discretization, the quadratic program (42) is
highly sparse in both the objective function and constraints. The
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sparsity in the constraints is caused by the fact that smoothness
conditions (33) are shared only with neighboring simplices. Con-
cerning the objective function, the following can be stated.

Proposition 2. Let nz(A) denote the number of nonzero entries of A
from (42), and take:

(i)

tj
Nt
j=1 as the Gaussian points relative to each sub-interval of the

temporal triangulation Tt .
(ii) {xk}

Nx
k=1 as the domain points of the spatial triangulation Tx.

Then nz(A) ∈ O(JxJt), where Jx denotes the number of simplices in the
spatial discretization and Jt denotes the number of sub-intervals in the
time discretization.

Proof. Toprove the statement,wederive anupper bound fornz(A)
in terms of the spline parameters: Jx, Jt , dx and dt .

Let (t, x) ∈ (∆t
j , ∆t

k), by Definition 1, we may rewrite (36) as

α(t, x) =


01×(k−1)d̂x(j−1)d̂t α∗(t, x) 01×(Jx−k)d̂x(Jt−j)d̂t


with

α∗ (t, x) = Bdx
∆x

k
(x) ⊗

dBdt
∆t

j
(t)

dt

+

n
k=1

fk

x, g (i)

apprx (t, x)
∂Bdx

∆x
k
(x)

∂xk
⊗ Bdt

∆t
j
(t)

 . (43)

From (43) and (15), we deduce that

nz(α(t, x)) = nz(α∗(t, x))

≤ d̂xd̂t =


(dx + n)!
dx!n!


(dt + 1) .

The number of domain points in Tx equals Jxd̂x and the number of
Gaussian points in Tt equals Jt(d̂t − 1). We hence obtain that

nz(A) = Jxd̂xJt(d̂t − 1)nz(α(t, x))

≤ JxJt


(dx + n)!
dx!n!

2

(dt + 1) dt

which proves our claim.

In terms of space complexity, Proposition 2 has the following im-
plication. The approximation power of V (i)

apprx can be improved by
increasing the degrees of the polynomials and/or making the tri-
angulations more dense. However, an increase in the number of
prismatic polytopes (i.e. by increasing Jx and/or Jt ) causes only a
linear growth in nz(A). Consequently, the approximation power of
a B-spline based discretization can be improved with O (JxJt) effi-
ciency in storage requirement. In a RBF-based discretization, any
improvement in the approximation power comes at the cost of a
quadratic increase in storage requirement, since Awould be dense.

5.2. Time-complexity

The time-complexity of the B-spline method is directly related
to the efficiency in solving the KKT conditions associatedwith (42).
The KKT conditions can efficiently be solved using thematrix itera-
tivemethod in Awanou et al. (2005), which in turn is a specific case
of the more general augmented Lagrangian and Method of Mul-
tipliers (Boyd, Parikh, Chu, Peleato, & Eckstein, 2011). The main
time-consuming element of the matrix iterative method is com-
puting the Cholesky factorization of ATA + ρ(HT

globalHglobal + GTG).
In a RBF based discretization, the time-complexity of computing
the Cholesky factorization will be cubic in terms of number of cen-
ters used in the entire discretization, since A would be completely
dense. In case of the B-spline method, a significant efficiency boost
can already be obtained using sparse Cholesky factorization algo-
rithms that aim tominimize the number of fill-in’s. The exact gains
time-complexity is difficult quantify, since it depends in compli-
cated way on the sparsity pattern. However, the complexity would
be noworse thanO((JxJt d̂xd̂t)3) flops, which is comparable to a RBF
based method. Nonetheless, apart from the sparsity property, the
matrix A satisfies the following property.

Proposition 3. The matrix A is row permutable to a block-diagonal
matrix consisting of JxJt blocks on the main diagonal.

Proof. To show that A is permutable to a block diagonalmatrix im-
plies showing that the objective function (42) is separable, which
can be proven straightforwardly from (43).

In terms of time-complexity, Proposition 3 has the following
implication. Since A is of block-diagonal structure, one can resort
to methods such as the Alternating Direction Method of Multi-
pliers (ADDM), as in Boyd et al. (2011), to take advantage of this
property. With the ADDM algorithm, one effectively needs to only
compute the Cholesky factorization for a set of JxJt smaller matri-
ces of size d̂xd̂t × d̂xd̂t , which significantly reduces computational
costs. More specifically, a time-complexity of O(JxJt(d̂xd̂t)3) flops
can be achieved, which is a factor of (JxJt)2 improvement overall.

The crux of ourmethod lies in theproperties discussed in Propo-
sitions 2 and 3. These properties are a immediate consequences of
the domain decomposition into simplices and make the proposed
methodhighly suitable for implementation under parallel comput-
ing architectures. Using techniques from distributed optimization,
we believe that this parallelization of computationswill allowus to
tackle large-scale problems involving high density triangulations
more effectively.

6. Simulation results

In this section, we demonstrate our method on two benchmark
example problems. We provide numerical evidence that show a
steady improvement of the approximation quality for increasingly
more dense triangulations. Note that the optimization of the
discretization parameters is a complex subject by itself, and hence
is out of the scope for the present study. Consequently, we limit our
analysis to equally sized type-I triangulation configurations (Lai &
Schumaker, 2007), low degree polynomials (i.e. cubic, quartic), and
continuity order ofmx = mt = 1.

6.1. Example I: a trivial example with analytic solution

The first example we discuss was also presented in Huang et al.
(2006). Consider the scalar system

ẋ = xu

with u ∈ U := {u ∈ R | 0 ≤ u ≤ 1}, and define the cost criteria

r (x, u) = 0, l (x) = −x, T = 1.

This yields the HJB equation

∂V (t, x)
∂t

+ inf
0≤u≤1


∂V (t, x)

∂x
xu


= 0 (44)

with boundary condition V (1, x) = −x. The exact viscosity solu-
tion for this PDE is known, and is given by the expression

V (t, x) =


−xe1−t , x > 0
−x, x ≤ 0. (45)
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(a) The 2-norm of the residual error, i.e.
e(1)(t, x)


2 . (b) The 2-norm of the approximation error, i.e.V (t, x) − V (1)(t, x)


2 .

Fig. 3. The 2-norm of the approximation error and residual error for the settings: Jx = 40, Jt = 4, dx = dt = 3,mx = mt = 1.
(a) The 2-norm of the residual error, i.e.
e(1)(t, x)


2 . (b) The 2-norm of the approximation error, i.e.V (t, x) − V (1)(t, x)


2 .

Fig. 4. The 2-norm of the approximation error and residual error for the settings: Jx = 20, Jt = 2, dx = dt = 3,mx = mt = 1.
Our aim is to approximate the solution of (44) for the state domain
Ω = [−1, 1]. Notice that the above considered optimal control
problem satisfies all the conditions of Theorem 1, hence the value-
iteration procedure is known to converge.Moreover, it suffices that
this convergence happens in one step, i.e. V (i)(t, x) = V (t, x) and
g(i)(t, x) = g∗(t, x) for i = 1, 2, etc. Therefore, in our analysis we
only consider the first iteration of Procedure 1 wherein we solve

∂V (1) (t, x)
∂t

+
∂V (1) (t, x)

∂x
xg(1) (t, x) = 0

with V (1) (1, x) = −x, and

g(1) (t, x) =


0, x

∂V (0) (t, x)
∂x

> 0

1, x
∂V (0) (t, x)

∂x
< 0

with V (0) (t, x) = −x.
In order to obtain quality approximations of V (1) within the do-

main of interest, we are required to apply our method on an ex-
tended domain Ω̄ ⊂ Ω to allow for a proper transition layer. We
set Ω̄ = [−2, 2]. Table 1 shows the obtained results for different
discretization settings. The table suggests that the approximations
becomemore refined when the density of the spatial triangulation
Tx is increased. This occurs however only when the resulting ODE
(27) is also sufficiently discretized in time.

In Figs. 3(b) and 4(b) the approximation error and residual error,
as in (35), is also plotted for two different discretization settings.
We note here that the residual error can give a good indication on
the quality of the approximation when the exact solution is un-
known. For instance, Figs. 3(a) and 4(a) show that the residual error
is particularly large at the area surrounding the non-smooth region
of the exact solution (45), i.e. at (t, x) ∈ |0, 1⟩ × {0}. When refer-
ring back to Figs. 3(b) and 4(b), we notice a correlation in which
the approximation error peaks at the same region. Although not
demonstrated in this paper, we believe that the approximations
can be improved locally by increasing the density of the triangula-
tion at regions with large peaks in the residual.
6.2. Example II: an inverse pendulum problem

In the next example, consider a damped inverse pendulum, and
let x1, x2 denote respectively the angular deviation and angular
rate w.r.t. the vertical. We have the dynamics
ẋ1
ẋ2


=


x2

a sin x1 + bx2 + cu


where u ∈ U := [−1, 1] is a torque input. Suppose that a = 9.81,
b = 1, and c = 1. The objective is to bring the pendulum mass to
the vertical at the finite end time through the cost criteria

r (x, u) = w1x12 + w2u2, l (x) = w3x22, T = 1.

This yields the HJB equation
∂V (t, x)

∂t
+ inf

−1≤u≤1


∂V (t, x)

∂x1
x2 +

∂V (t, x)
∂x1

(a sin x1

+ bx2 + cu) + w1x12 + w2u2


= 0 (46)

with boundary condition V (1, x) = w3x22. Our interest is to ap-
proximate the solution of (46) onΩ = [−1, 1]× [−1, 1].We solve
the PDE however on the extended domain Ω̄ = [−2, 2]× [−4, 4].
Since f is input affine, r is quadratic in u, and l is continuously dif-
ferentiable,we deduce that Theorem1holds. Applying Procedure 1
yields

∂V (i) (t, x)
∂t

+
∂V (i) (t, x)

∂x1
x2 +

∂V (i) (t, x)
∂x2


a sin x1

+ bx2 + cg(i) (t, x)


+ w1x12 + w2g(i) (t, x)
2

= 0

and

g(i) (t, x) = min

1,max


−1,

−c
2w2

∂V (i−1) (t, x)
∂x2


.

The analytic solution for this specific example is unknown. We
therefore compare our obtained results with a high accuracy level
set approximation using the level set toolbox (Mitchell, 2007).
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(a) The number of triangulations is set to Jx = 3 × 3 × 2.
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(b) The number of triangulations is set to Jx = 5 × 5 × 2.

Fig. 5. The 2-norm of the optimal control-law approximation error in the fourth iteration, i.e.
g∗(t, x) − g(4)

apprx(t, x)

2
.

(a) rms(V (t, x) − V (i)(t, x)) and rms(g∗(t, x) − g(i)
apprx(t, x)). (b)

V (t, x) − V (i)(t, x)


∞
and

g∗(t, x) − g(i)
apprx(t, x)


∞

.

Fig. 6. Results for example II for different discretization settings. Only the number of triangles Jx in Tx is varied, other parameters are fixed to: Jt = 4, dx = dt = 4,mx =

mt = 1.
Fig. 6 shows the obtained results for different discretization set-
tings. Fig. 5 plots the error in the optimal feedback law for the
fourth value-iteration step. The results suggest that refinements in
the spatial triangulation Tx lead to better approximations of the
value function and the optimal feedback control-law.

7. Conclusions and future work

A new collocation method was presented to solve the time-
dependent HJB equation through discretizing the PDE with sim-
plex B-splines both in state and time. It was shown that, under
the framework of a value-iteration procedure, an estimate of the
spline coefficients can be obtained through solving a sequence
of quadratic programs. Because of domain decomposition, the re-
sulting quadratic programs are shown to be highly sparse, which
lead to significant improvement in space-complexity, whereas the
time-complexity is at worst as good as any RBF based methods.
The correctness of the method was demonstrated by applying the
method on two benchmark problems. Numerical results have in-
dicated that, under fixed degree and first-order smoothness con-
ditions, the approximations become progressively more refined
when increasing the triangulation density.
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Table 1
Results for example I with cubic splines (i.e. dx = dt = 3) using different type-I
triangulation settings.

Jx 10 20 30 40

(a)
V (t, x) − V (1)

apprx(t, x)


∞

Jt 1 1.98 · 10−1 2.51 · 10−1 2.16 · 10−1 6.47 ·10−2

2 3.26 · 10−2 1.64 · 10−2 1.03 · 10−2 8.21 ·10−3

3 3.25 · 10−2 1.63 · 10−2 1.03 · 10−2 6.66 ·10−3

4 3.23 · 10−2 1.62 · 10−2 1.03 · 10−2 5.85 ·10−3

(b) rms(V (t, x) − V (1)
apprx(t, x))

Jt 1 6.35 · 10−3 5.97 · 10−3 3.33 · 10−3 3.34 ·10−3

2 3.83 · 10−3 1.10 · 10−3 5.53 · 10−4 3.11 ·10−4

3 3.89 · 10−3 1.11 · 10−3 5.37 · 10−4 2.97 ·10−4

4 3.91 · 10−3 1.12 · 10−3 5.35 · 10−4 2.88 ·10−4

With the overall goal of developing nonlinear optimal con-
trollers for real-time applications, future work will primarily be
geared towards developing customized distributed solvers, so that
also problems of higher dimensions can be addressed using the
method.
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