
Numerical Mathematics:

Homework 3

1



Numerical Mathematics : Homework 3

Problem 1

Write a function called:

[ y int ] = lagrangeinterp( x int, X, Y )

that evaluates a Lagrange interpolation formula for a given set of points. Here, X and Y are column vectors

whose entries contain the coordinates x1, x2,...xn and values f(x1), f(x2),...f(xn), respectively. The output

y int are the values of the interpolating polynomial at the interpolation points x int, which are again both

column vectors.

To code things efficiently, we are going to re-write the Lagrange interpolation formula. Let l(x) := (x −
x1)(x− x2) · · · (x− xn), so that:

Ln−1,k(x) = l(x)
wk

x− xk
, wk :=

1
n∏

j=1,j 6=k

(xk − xj)

.

By doing so, the interpolating polynomial can be re-expressed as:

Pn−1(x) =

n∑
k=1

f(xk)Ln−1,k(x) = l(x)

n∑
k=1

f(xk)
wk

x− xk

Explain in your own words why the formula above is computationally more efficient than classical one derived

in lecture.

Note: Your matlab routine must take special care of the case when one of the interpolating points coincide

with x1, x2,...xn to avoid division by zero!

Solution. Shown below is the code.

1 function [ y int ] = lagrangeinterp( x int, X, Y )
2 %UNTITLED2 Summary of this function goes here
3 % Detailed explanation goes here
4

5 % number of points:
6 n = length(X);
7

8 % Pre-compute weights:
9 W = X*ones(1,n) - ones(n,1)*transpose(X)+eye(n);

10 W = 1 ./ prod(W,2);
11

12

13 % Initialize array of zeros for output
14 y int = zeros(size(x int));
15

16 % evaluate function
17 for k=1:length(x int)
18

19 % check if interpolation point is not equal to one of the data points
20 % to prevent division by zero.
21 m = find(X == x int(k));
22 if isempty(m)
23

24 diff = x int(k)-X;
25 y int(k) = prod(diff) * transpose( 1./diff ) * (W .* Y);
26
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27 else
28

29 % if it is, the value is simply:
30 y int(k) = Y(m);
31

32 end
33

34 end
35

36

37 end

Problem 2

Consider the function:

f(x) =
1

1 + 25x2

We are going to approximate this function with an interpolating polynomial. The interpolation nodes are

to our discretion. For instance, we may choose equidistant points or the Chebyshev nodes as discussed in

class. Write a function called: [ ] = cheb vs equispaced( n , type ) which generates a figure with the

follow items all in one plot:

1. A graph of the original function,

2. Markers at the interpolation points

3. A graph of interpolating polynomial.

The argument n describes the degree of the interpolating polynomial (hence n+1 nodes). The argument type

specificies whether one desires an equidistant or Chebhyshev interpolation. Entering type=’equispaced’

should yield an equispaced interpolation, entering type=’Chebyshev’ should yield a Chebyshev interpola-

tion. Describe what you observe from the plots. Which type of interpolation does a better job? Does this

make sense?

Solution. Shown below is the code. Interpolation at equispaced points seem to diverge for this function, and

for the Chebyshev nodes convergence occurs. That Chebhyshev polynomials perform better certainly make

sense, given the discussions in the theory class.

1 function [ ] = cheb vs equispaced( n , type )
2

3

4

5 if strcmp(type,'equispaced')
6

7 % equispaced nodes
8 X = transpose(-1:(2/(n)):1);
9 Y = 1 ./ (1+25 .* X.ˆ2 );

10

11

12

13 elseif strcmp(type,'Chebyshev')
14

15 % Chebyshev nodes
16 X = cos((2*transpose(0:n) + 1)*pi/(2*n+2));
17 Y = 1 ./ (1+25 .* X.ˆ2 );
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18 length(X)
19 end
20

21

22 % interpolating polynomial
23 x int = transpose(-1:(1/1000):1);
24 y int = lagrangeinterp( x int, X, Y );
25

26 % true function values
27 y true = 1 ./ (1+25 .* x int.ˆ2 );
28

29

30

31 figure('position',[100 100 850 400])
32 hold on
33 plot(X,Y,'ko')
34 axis([-1 1 -0.25 1])
35 plot(x int,y true,'k-.')
36 plot(x int,y int,'r')

Problem 3

Let us generalize the concept of polynomial interpolation a bit. Suppose that we are given a continuously

differentiable function on an interval [a, b]. Assume that, in addition to the function values f(x1), f(x2), ...

,f(xn) at x1, x2, ... xn, the derivative values f ′(x1), f ′(x2), ... ,f ′(xn) are also provided. Let:

Ln−1,k(x) =

n∏
j=1,j 6=k

x− xj

xk − xj

denote j’th Lagrange interpolation. Show that the 2n− 1 degree polynomial:

H2n−1(x) =

n∑
k=1

f(xk)Hn−1,k(x) + f ′(xk)Ĥn−1,k(x)

Hn−1,k(x) = [1− 2(x− xk)L′n−1,k(xk)]L2
n−1,k(x), Ĥn−1,k(x) = (x− xk)L2

n−1,k(x)

uniquely interpolates the function values and its derivatives at the respective . To show uniqueness, you may

want to make use of the fundamental theorem of algebra. Rolle’s theorem may also be handy.

Solution. Let us first show that H2n−1(x) interpolates the function values f(x1), f(x2), ... ,f(xn). Observe

that

Hn−1,k(xi) =

{
1 i = k

0 i 6= k
,

and

Ĥn−1,k(xi) = 0 for i = 1, . . . , n.

This gives H2n−1(xi) = f(xi)

Next, we will show that the derivative H ′2n−1(x) interpolates the derivative values f ′(x1), f ′(x2), ... ,f ′(xn).

We must look at:

H ′2n−1(x) =

n∑
k=1

f(xk)H ′n−1,k(x) + f ′(xk)Ĥ ′n−1,k(x)
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We must find expressions for H ′n−1,k(x) and Ĥ ′n−1,k(x). Elementary calculus shows:

H ′n−1,k(x) = −2L′n−1,k(xk)L2
n−1,k(x) + [1− 2(x− xk)L′n−1,k(xk)] 2Ln−1,k(x)L′n−1,k(x)

Ĥ ′n−1,k(x) = L2
n−1,k(x) + (x− xk)2Ln−1,k(x)L′n−1,k(x)

We have that:

H ′n−1,k(xi) = 0 for i = 1, . . . , n,

and

Ĥ ′n−1,k(xi) =

{
1 i = k

0 i 6= k
.

This verifies H ′2n−1(xi) = f ′(xi).

To show uniqueness. Suppose there exists another polynomial G2n−1(x) which does the job. Then consider

the difference: d(x) = H2n−1(x) − G2n−1(x). Note that d(x) is at most of degree 2n − 1. For simplicity

assume that the points x1 < x2 < . . . < xn are ordered. Observe that d(x) has roots in x1, x2, ..., xn (that

are n roots). Applying Rolle’s theorem n − 1 times, we know that d′(x) has (in addition to x1, x2, ..., xn)

roots at:

x1 < h1 < x2 < h2 < x3 < . . . < hn−1 < xn

Hence d′(x) has n + (n − 1) = 2n − 1 roots. The degree of d′(x) is however 2n − 2. This immediately

contradicts the fundamental theorem of algebra.
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