
Section 1: Basic concepts in numerical analysis

February 4, 2019

1 Examples of problems in numerical analy-

sis.

What is numerical analysis? A definition put forth by prof. Nick Trefethen
is:

Numerical analysis is the study of algorithms for solving problem
of continuous mathematics.

The phrase continuous refers here to mathematical problems involving real
or complex variables1. This is opposed to problems in discrete mathematics
which are mostly adressed by sister discipline computer science. What is an
algorithm, you may ask? Well let us give the following working definition:

A set of steps and rules that are followed in order to solve a
mathematical problem.

That is, if you give me the rules and steps, I can turn off my brain and simply
follow the step and rules to extract a solution to some problem.

1Indeed, the real numbers are like a continuum, in contrast to integers which are
discrete.

1



Taking a leisurely stroll, let us look at some typical problems addressed in
numerical analysis to get a sense of the field.

Solving a linear system.
This is probably the most basic problem adressed in numerical analysis.
Solve:

Ax = b

for x. Many other problems in numerical analysis are eventually reduced to
this problem

Evaluation of functions.
At a fundamental level, computer arithmetic only does additions, subtrac-
tions, multiplication and division. How does one evaluate special functions
such as sin(x), log x, erf(x), Bessel functions, Hankel function, Theta func-
tion, etc. within certain digits of accuracy? One can aso pose the same
question for special constants such as pi, e, or Feigenbaum’s number.

Function approximation and polynomial interpolation.
Function approximation and interpolation is an age old problem in numerical
analysis and related subject of approximation theory. Function approxima-
tion nowadays plays a big role in the machine learnig.

Finding roots of a polynomial.
Finding the roots of a polynomial is probably the best example of why numer-
ical analysisis necessary. Abel and Rufinni has shown that for polynomials of
degree greater than 5, there are no algebraic solutions in terms of radicals. A
negative theorem in mathematics with important consequences: the roots of
polynomials of degree greater than 5 has to obtained through approximative
means.

Numerical integration.
Numerical evaluation of integrals.

Solving an ordinary differential equation.
Again here, it it is not possible to obtain a simple algebraic solution if the
dynamical system is sufficiently complex. Consider the transition from the 2
body problem to the 3 body problem.

2



Solving a PDE
Many problems in mathematical physics are modeled in terms PDEs. We
would like to solve them.

Optimizating functions of real variables.
A common problem in industry.

2 Finite precision arithmetic.

Problems in numerical analysis intrinsically involve computations with real
numbers. Unless the number turns out to be special (i.e. an integer or
rational), to describe a real number requires an infinite number digits. In
the decimal representation, a real number x ∈ R can be repesented by:

x = ±10q · 0.a1a2a3a4 . . .

where q ∈ Z is some integer and ak ∈ 0, 1, . . . , 9 is one of the ten digits of
the decimal representation. To give an example:

π = 101 · 0.3146 . . . .

In a computer architecture2, one does not have infinite memory to store all
these digits, and most truncate the sequence somewhere. Also one cannot
let the integer q become arbitrarily large in both the positive and negative
direction. This would require again an infinite memory to store the inte-
ger. So must bound it by some integer N . Overall, instead of the exact
representation, we have the approximate representation:

fl(x) = ±10q̂ · 0.a1a2a3a4 . . . aM , q̂ =


−N q < −N
N q > N

q otherwise

The notation fl stands for floating point number. The word used to descibe
such approximations. With floating point number, the continuum of real

2In computer architectures one of course uses the binary representation, but for the
issues that we will be discussing here, it does not matter what representation is being
used.

3



numbers is reduced to something finite. This has conquences. The digits
a1, a2, a3, a4,..., aM are called the mantissa or significand. The number q̂ is
called the exponent.

Relative error versus absolute error Let us look at the error introduced
by approximating a number with a float. First, consider the case where
−N ≤ q ≤ N . We have:

|x− fl(x)| = 10q−M · 0.aM+1aM+2 . . . .

In the worst case, aM+1 = 9, aM+2 = 9, etc. Recalling that 0.9999 . . . = 1,
the upper bound is:

|x− fl(x)| ≤ 10q−M

The appearance of q in the upper bound shows that the error has a depen-
dence on the magnitude of the approximated number itself. This is because
we are looking at the absolute error. If we consider the relative error, we see
that:

|x− fl(x)|
|x|

≤ 10−M .

That is, the error decays with the number of digits in the signficand.

If q > N or q < −N , saturation occurs. The absolute erors are respectively
(overflow):

|x− fl(x)| = 10q · 0.a1a2a3a4 . . .− 10N ≤ 10q − 10N .

and (underflow)

|x− fl(x)| = 10q · 0.a1a2a3a4 . . . ≤ 10q.

A key observation: allowing more digits in the significand means better rel-
ative error, allowing larger integers in the exponent pushes the bounds for
underflow and overflow.

Calculations with floating point arithmetic. Calculations with float-
ing point arithmetic can (and typically will) amplify errors. You probably

4



have experienced this phenomenon already in a highschool math homework.
In some itermediate steps of your calculations, you perform some round-off.
But instead taking the exact answer of your intermediate step, you use your
rounded version in the subsequent calculations. Finally, it turns that your
answer is nothing but close to the answer in the solution manual. You have
been a victim of floating point arithmetic!

The analysis of round-off error in floating point arithmetic can go quite in
depth. Here we are not going cover all those details, but let us look at an
example of what can go wrong. Consider the task of subtracting two large,
nearly equal positive numbers x and y:

x = ±10q · 0.a1a2 . . . aMaM+1 . . . , y = ±10q · 0.b1b2 . . . bMbM+1 . . .

with q > M and ak = bk for k = 1, 2, . . . ,M , but ak 6= bk for k > M .
Subtraction in floating gives

fl(fl(x)− fl(y)) = 0

But we know that x− y 6= 0, and if fact a number of quite large magnitude!
This phenomenon is called catostrophic cancellation. It can occur in the sim-
plest of problems such as find the roots of quadratic function. Algebraically,
the expressions:

x1 = p−
√
p2 + q =

q

p+
√
p2 + q

both describe the smallest root of the quadratic x2 − 2px− q. However, the
latter one avoids the possibility of catostrophic cancellation. On a computer,
for p = 12345678 and q = 1, we get:

x1 = −4.097819 · 10−8,

for the first expression and:

x1 = −4.050000 · 10−8.

The latter expresion is closer to the true solution.

Instabilities in algorithms due to floating point arithmetic. The
approximate calculations induced by floating point arithmetic can cause in-
stabilities which are unforeseen in exact arithmetic. We already encountered

5



such an example when we discussed the two formulas for find the root of a
quadratic function. To give a more “large-scale” example, consider the prob-
lem of solving a least squares problem for which the solution is well known
to be expressed by:

x̂ = (ATA)−1Ab.

As the expression shows, one has to take inverse of the matrix ATA. But this
matrix first needs to be evaluated. If we were allowed to do exact arithmetic,
we would need twice the number of digits to store each entry of the matrix.
However, round off and possible catostrophic cancellations are going to per-
turb these entries. Hence, instead of inverting ATA, we would be inverting a
nearby system ATA+E. The question remains how this would affect further
computations. We would be looking into this later in a bit more detail. For
now, it should be noted that it has taken computer scientists and numeri-
cal analysists quite some effort to make solving least squares problems the
standard technology it is today.

3 The computational complexity of an algo-

rithm

One quantity which a numerical analysist must be able to assess is:

How much work is required to apply some algorithm?

In particular, it is important to answer this question with regard to the
scale/size of the problem. Let us illustrate that point. Consider the task of
adding n numbers:

n∑
k=1

ak = a1 + a2 + . . .+ an

Obviously, n describes here the size of the problem. The work grows here
proportionally: n additions are required to evaluate a sum of n numbers. No
spectalar analysis indeed. Now consider another problem, evaluating the dot
product of two vectors:

n∑
k=1

akbk.

6



Now we need to do n multiplications and n additions. If we assume for
now that multiplications and additions require roughly the same amount of
work, it should be clear that we need to do roughly 2n elementary floating
point operations. There is still proportional growth, but the constant has
increased. This is not much a significant change practically.

Now let us look at more demanding problem: evaluating a matrix vector
product. Assuming a square matrix:a11 · · · a1n

...
...

an1 · · · ann


b1...
bn

 =


∑n

k=1 a1kbk
...∑n

k=1 ankbk


The problem size is again n, but we see that matrix vector multiplication
is equivalent to n dot products. The number of operations are 2n2. This
is interesting because now the growth is quadratic with respect to problem
size. We would say that matrix vector multiplication is computationally more
expensive.

The big-O notation. Our previous discussion motivates a very useful
notation which is used a lot in numerical analysis (and actually pretty much
everywhere in mathematics):

A function f(n) belongs to the set O(g(n)) if there exists a con-
stants C,N > 0 such that:

|f(n)| ≤ C|g(n)| for alln > N.

This definition allows one to classify functions according to their asymptotic
growth properties. That is, if f(n) ∈ O(g(n)) but g(n) /∈ O(f(n)), then g(n)
grows faster asymptotically than f(n). This means that no matter how large
pick your constant C > 0, one can always find a N > 0 such that:

|g(n)| > C|f(n)| for n > N.

It should be clear that n ∈ O(n2) but n2 /∈ O(n).

7



Assesing the performance of an algorithm. The fairest way to quan-
tify the performance of an algorithm to solve some mathematical problem
can be loosely posed as follows:

For given ε > 0, how many arithemetic operations do we need to
evualate the solution to a problem within ε precision?

Using floating point operations (as discussed before) is a way to quantify the
number of operations. Later on, we will illustrate this idea of assesing the
performance of an algorithm thoroughly by means of an example. For now,
we would like to mention that measuring in terms of floating point operations
could leave out a lot of details. For example, weighing addition/subtraction
equally to multiplication/division is far from truth. Also, numbers with a
huge mantissa require more work to evaluate, and that is all being ignored
now.

4 Formulating well-posed problems

Given the fact that real computer algorithms are constrained by approxi-
mate calculations, it is very important to consider the potential sentivity of
the probem to these approximate calculations. A problem which is inher-
ently sensitive to such perturbations is by default a difficult problem to solve
numerically. It will require extra elbow grease to show that things do not
go kaput under finite precision arithmetic. Often such difficult situations
can be avoided entirely by re-formulating the problem in the right way. But
sometimes it is also intrinsic to the nature of the underlying physical problem
itself. As a numerical analysist, you want to verify for yourself that what you
aim to compute through approximations is not a fragile quantity. The best
way to illustrate this is to consider the example of solving a linear system:

Ax = b.

A 2 by 2 example. Consider the following simple system:[
1

1
σ

] [
x1
x2

]
=

[
1
0

]
, and σ > 0.

8



Now suppose that we perturb the right hand side by:[
1

1
σ

] [
x1(ε)
x2(ε)

]
=

[
1
0

]
+

[
0
ε

]
.

This pertubations can be seen as the consequence of some round-off error
that may occur in some algorithm. The important question that one should
ask is: how does this affect the solution of the problem? Well, the solution
can be derived explitly: [

x1(ε)
x2(ε)

]
=

[
1
σε

]
It should be clear that if σ >> 0 is an extremely larger, the perturbed solution
can be quite signficantly different. Likewise, consider a perturbation to the
matrix itself: [

1
1
σ

+ ε

] [
x1(ε)
x2(ε)

]
=

[
0
1

]
The solution is: [

x1(ε)
x2(ε)

]
=

[
0
σ

1+εσ

]
If σ >> 0 is again large, we have a perturbation or rougly 1/ε to the solution
which is quite crazy. We are dealing here with a so-called ill-conditioned
matrix. Such matrices can be a potential nightmare for numerical analysists.

Vector and matrix norms Our goal is to generalize what we have seen
in the simple 2 by 2 example. Let us revise some basic linear algebra notions

first. Consider a vector x =
[
x1 x2 · · · xn

]T
. The (Euclidian) norm of a

matrix is defined as:

‖x‖ :=
√
x21 + x22 + . . .+ x2n =

√
xTx

Similarly, we can define the so-called matrix norm:

‖A‖ := max
06=x∈Rn

‖Ax‖
‖x‖

= max
‖x‖=1

‖Ax‖

As you may know, this describes the worst-case amplication factor of vector
x when applied to a matrix A. Let us recall some few important properties
of norms which we will be needing later:

9



1. ‖x‖ > 0

2. ‖cx‖ = |c| ‖x‖ for some scalar c ∈ R

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (the triangle inequality)

and the multplicatice property for matrix norms:

‖AB‖ ≤ ‖A‖ ‖B‖ .

The condition number A general linear system with a general perturba-
tion would look as follows:

(A+ εF )x(ε) = b+ εf, x(0) = x

For small perturbations ε, the solution x(ε) depends smoothly on the pertur-
bations if A is nonsingular (can you explain why?). From implicit differenti-
ation, we can show that:

ẋ(0) = A−1(f − Fx)

A taylor series x(ε) = x+ εẋ+O(ε2) hence can be expressed as:

x(ε)− x(0) = εA−1(f − Fx) +O(ε2).

Now applying norms on both sides, we can show that:

‖x(ε)− x‖ = ||εA−1(f − Fx) +O(ε2)||
≤ |ε|

∥∥A−1(f − Fx)
∥∥+O(ε2)

≤ |ε|
∥∥A−1∥∥ ‖(f − Fx)‖+O(ε2)

≤ |ε|
∥∥A−1∥∥ ‖f‖+ |ε| ‖Fx‖+O(ε2)

≤ |ε|
∥∥A−1∥∥ ‖f‖+ |ε| ‖F‖ ‖x‖+O(ε2)

Notice how we have used all those norm properties of the previous section.
To continue, let us divide by ‖x‖ to obtain:

‖x(ε)− x‖
‖x‖

≤ |ε|‖A
−1‖ ‖f‖
‖x‖

+ |ε| ‖F‖+O(ε2) (1)

10



Now recognize that:

‖b‖ ≤ ‖A‖ ‖x‖ or
1

‖x‖
≤ ‖A‖
‖b‖

substitution back into (1) and doing some further manipulations yields:

‖x(ε)− x‖
‖x‖

≤ |ε|‖A
−1‖ ‖A‖ ‖f‖
‖b‖

+ |ε| ‖F‖+O(ε2)

≤
∥∥A−1∥∥ ‖A‖(|ε|‖f‖

‖b‖
+ |ε|‖F‖

‖A‖

)
+O(ε2)

We now have derived the following revealing result:

Theorem 1. Consider a linear system Ax = b and suppose we have the
following perturbation:

(A+ εF )x(ε) = b+ εf, x(0) = x

For sufficiently small ε, The relative error of the perturbed solution is bounded
by:

‖x(ε)− x‖
‖x‖

≤
∥∥A−1∥∥ ‖A‖ (ρb + ρA) +O(ε2)

where:

ρb ≤ |ε|
‖f‖
‖b‖

, ρA =≤ |ε|‖F‖
‖A‖

.

Interpretation of theorem: The terms ρb and A, describe respectively the
measure of pertubations in b and A respectively, the quantity∥∥A−1∥∥ ‖A‖
is called the condition number and can be seen as as gain which amplifies
this perturbations. If the condition is small, we are more less gauranteed to
be safe. If the condition number is large, hell may break lose (or it may as
well not, since this is only an upper bound!).

11



5 Designing efficient algorithms: a cute ex-

ample

The main goal of a numerical analysist is to design algorithms to solve math-
ematical problem statements such as those presented in section 1. The focus
here is to compute the solution to a problem with the highest accuracy pos-
sible (i.e. read here: number of correct digits), while using as few elementary
operations as possible. Any significant breakthrough in that regard would
be considered a progession. A lot of creativity is often required to make such
progressions. This is what makes numerical analysis exciting!

Let us illustrate this by means of an example. Consider the probem of
computing a rational approximation to the number π. One way to solve this
problem is to use Leibnitz formula:

π = 4
∞∑
k=0

(−1)k

2k + 1
.

Analysis of Leibnitz’s formula. Leibnitz formula can be derived as fol-
lows. Recall from calculus:

π

4
= arctan(1)− arctan(0)

=

∫ 1

0

1

1 + x2
dx

=

∫ 1

0

1

1− (−x2)
dx

=

∫ 1

0

(
∞∑
k=1

(−1)kx2k

)
dx

In the last manipulation, we used the geometric series, which is convergent
for the range values considered in the integral. Exchanging the summation
with the integral, and then subsequently evaluating the integral would give
us the desired result. However, since it is an infinite sum we need to be more

12



careful and do things more carefully. Let us continue.

π

4
=

∫ 1

0

(
∞∑
k=0

(−1)kx2k

)
dx

=

∫ 1

0

n∑
k=0

(−1)kx2k +
∞∑

k=n+1

(−1)kx2kdx

=

∫ 1

0

n∑
k=0

(−1)kx2k + (−1)n+1x2n+2

∞∑
k=1

(−1)kx2kdx

=

∫ 1

0

n∑
k=0

(−1)kx2k +
(−1)n+1x2n+2

1 + x2
dx

=
n∑
k=1

∫ 1

0

(−1)kx2kdx+

∫ 1

0

(−1)n+1x2n+2

1 + x2
dx

=
n∑
k=1

(−1)k

2k + 1
+

∫ 1

0

(−1)n+1x2n+2

1 + x2
dx

In other words:∣∣∣∣∣π − 4
n∑
k=0

(−1)k

2k + 1

∣∣∣∣∣ ≤ 4

∣∣∣∣∫ 1

0

(−1)n+1x2n+2

1 + x2
dx

∣∣∣∣
≤ 4

∫ 1

0

∣∣∣∣(−1)n+1x2n+2

1 + x2

∣∣∣∣ dx
≤ 4

∫ 1

0

x2n+2

1 + x2
dx

≤ 4

∫ 1

0

x2n+2dx

≤ 4

2n+ 1

As n → ∞, the right hand side decays to zero, which shows that we can

approximate by simply evaluating the partial sum
∑n

k=0
(−1)k
2k+1

with more and
more terms. There are however two problems with this method of approxi-
mating π:

13



1. The possibility of catastrophic cancellation which may lead to numeri-
cal instabilities. Indeed, Leibnitz is an alternating sum:

π = 4

(
1− 1

3
+

1

5
− 1

7
+ . . .

)
and this should raise eyebrows of concern.

2. Even if we were able to do exact arithmetic, the sum converges very
slowly. To approximate π within some given ε > 0, i.e.∣∣∣∣∣π − 4

n∑
k=1

(−1)k

2k + 1

∣∣∣∣∣ ≤ ε,

we need to add n > 2/ε+ 1
2

terms. If we would like to approximate the
first d digits correctly, this would mean n > 2 · 10d + 1

2
. The number of

terms needed grows exponentially! Given that evaluating every term
in the summation takes roughly O(1), adding n terms will take O(n).
Overall the complexity of the method is O(10d). This is not a very
practical way of evaluating π, we can do better!

What follows next is how we can resolve these issues.

Avoiding potential catastrophic cancellation. To avoid possible catas-
trophic cancellation. We can easily convert the alternating sum into a sum
of only positive terms. Simply notice that:

π = 4

((
1− 1

3

)
+

(
1

5
− 1

7

)
+ . . .

)
= 4

∞∑
k=0

1

4k + 1
− 1

4k + 3

= 4
∞∑
k=0

2

(4k + 1)(4k + 3)
.

That solves the cancellation problem, but we have not really improved the
compexity of the algorithm.

14



Accelerating the algorithm. We can derive a better of way approximat-
ing π through cleverly manipulating the Leibnitz sum to obtain a “better
series”. For that purpose, write3:

n∑
k=0

(−1)k

2k + 1
= a0 − a1 + a2 − a3 + . . .+ an−1 − an, ak =

1

2k + 1
. (2)

Perform the manipulation:

n∑
k=0

(−1)k

2k + 1
=

1

2
a0 +

1

2
((a0 − a1)− (a1 − a2) + . . .− (an − an+1))−

1

2
an+1

We can repeat this step again:

(a0 − a1)− (a1 − a2) + . . .− (an − an+1) =

((a0 − 2a1 + a2)− (a1 − 2a2 + a3) + . . .− (an − 2an+1 + an+2))−
1

2
(an+1−an+2)

to obtain:

n∑
k=0

(−1)k

2k + 1
=

(
1

2
a0 +

1

4

n∑
k=0

(ak − ak+1) +
1

8

n∑
k=0

(ak − 2ak+1 + ak+2)

)

−
(

1

2
an +

1

4
(an+1 − an+2)

)
Doing this n times gives us the expression (please convince yourself that this
is true!):

n∑
k=0

(−1)k

2k + 1
=

n∑
k=0

1

2k+1

(
k∑
j=0

(−1)j
(
k

j

)
aj

)
−
n−1∑
k=0

1

2k+1

(
k∑
j=0

(−1)j
(
k

j

)
an+1+j

)
.

You may be wondering why we are all doing this, but hold on for a second. It
can be shown that the first summation term on the right hand side can also
be used as a means to approximate π, and this summation converges much
faster than the Leibnitz sum! What we will do next is to first show that:

π

4
=
∞∑
k=0

1

2k+1

(
k∑
j=0

(−1)j
(
k

j

)
aj

)
. (3)

3Notice that the partial sum is expressed assuming that n is some odd number

15



Then we will show that this sum converges more rapidly. Finally, we will do
some further shenanigans to obtain a more efficient algorithm to approximate
π for a given accuracy.

The expression (3) is correct.
To verify (3) we make the following observation:

an > an − an+1 > an − 2an+1 + an+2 > . . . >
n∑
j=0

(−1)j
(
k

j

)
an+1+j.

Hence,∣∣∣∣∣
n∑
k=0

(−1)k

2k + 1
−

n∑
k=0

1

2k+1

(
k∑
j=0

(−1)j
(
k

j

)
aj

)∣∣∣∣∣ ≤
n−1∑
k=0

1

2k+1

(
k∑
j=0

(−1)j
(
k

j

)
an+1+j

)

≤ an

n−1∑
k=0

1

2k+1

(
k∑
j=0

(−1)j
(
k

j

)
an+1+j

)

≤ an

∞∑
k=0

1

2k+1

= an =
1

2n+ 1

As n→∞ these two sums converge to each other, hence (3) is correct.

The expression (3) converges more rapidly.
Now we need to find a way to bound this monster:∣∣∣∣∣π −

n∑
k=0

1

2k+1

(
k∑
j=0

(−1)j
(
k

j

)
aj

)∣∣∣∣∣ ≤
∞∑

k=n+1

1

2k+1

(
k∑
j=0

(−1)j
(
k

j

)
aj

)

The trick is to again observe that:

a0 > a0 − a1 > a0 − 2a1 + a2 > . . . >
k∑
j=0

(−1)j
(
k

j

)
aj < . . . .

A look at the definition of ak in (2) should tell you why. Once this little

16



observation is made, the remaining part becomes easy:∣∣∣∣∣π −
n∑
k=0

1

2k+1

(
k∑
j=0

(−1)j
(
k

j

)
aj

)∣∣∣∣∣ ≤
∞∑

k=n+1

1

2k+1

(
k∑
j=0

(−1)j
(
k

j

)
aj

)

≤ a0

∞∑
k=n+1

1

2k+1

=
1

2n

This is great. To approximate π within a given ε error, we only now need
n > − log2 ε. In terms of correct digits d, we only need n > d log2 10. It
seems that we now have O(d) algorithm to compute the first d digits of π.
But this is far from the truth! We have a nested sum: to evaluate the 2nd
term in (3) requires 2 additions, the 3rd term requires 6 additions, the 10th
term will require 3628800 operations, etc. Nothing has really been achieved,
but we are not done yet!

Our modified sum permits a more efficient algorithm.
We need to find a more efficient way to evaluate the terms in (3). This can
be done through further manipulation as follows. That is, by evaluating the
terms carefully, it can be observed that:

a0 = 1

a0 − a1 =
2

3

a0 − 2a1 + a2 =
2 · 4
3 · 5

...
k∑
j=0

(−1)j
(
k

j

)
aj =

2 · 4 · . . . 2k
3 · 5 · . . . · (2k + 1)

=
(2k)!

(2k + 1)!

Hence, plugging it into (3):

π

4
=
∞∑
k=0

1

2k+1

(2k)!

(2k + 1)!
=
∞∑
k=0

1

2

k!

(2k + 1)!

This is an amazing result because:

k!

(2k + 1)!
=

(k − 1)!

(2(k − 1) + 1)!

k

2k + 1

17



The k-th term can be evaluated by simply scaling (k − 1)-th term. Every
term can be evaluated O(1) operations. We now have a O(d) algorithm to
compute the first d digits of π.

Can we do even better? There exist even faster and better algorithms to
approximate π, and in principle, this whole business of appoximating π has
turned into bragging competition amongst mathematicians and computer sci-
entists on who can compute the most number digits of π. Much of numerical
analysis can be seen as a game of being the fastest to solve a problem(while
being correct of course!). All numerical analysists are in principle like 100m
dash runners trying to beat Usain Bolt’s record.

18


