Numerical Mathematics:
Homework 2

Numerical Mathematics : Homework 2

Problem 1

Recall (from your linear algebra class) the singular value decomposition of a matrix A € R**":
A=UxvT
where U,V € R™*" are orthogonal matrices, and
g1

02
Y=) , 01 >022>...20,>0.

On

is a diagonal matrix. Find an expression of the condition number ||A|| ||[A7!|| in terms of the singular
values. Also, what is the condition number of a unitary matrix? What does this mean from a computational
standpoint?

Solution. We first find an expression for ||A||. Observe:

14)*

max || Az|?
lzl=1

max zL AT Ax

llzl|=1

pmax 2ZTVvETUTUSV
x||=1

= max y'X%, y=VTz
llzll=1

2,2 2,2
= AX 0Yy ot oy,
x||l=

Let us study this formula thorougly. How should we choose y so that we maximize the right hand side? Well
y? 4+ ...+ y2 =1, so we better put all our energy on the first variable, i.e. set y; = 1 and the remaining

entries equal to zero. This gives ||A]|*> = 02 or ||A| = oy. Doing the same process for the inverse gives
|A=!|| = 1/0,. Hence,
_ 01
lAlHA™ = ==
on
The condition number of an unitary matrix is equal to unity. O

Problem 2

Make a function to solve a lower triangular system using forward substitution problem. Call this function
solve_lowertriangular.m. It should take in two arguments: the first argument is a square matrix A and
the second argument a vector b. The output should be x. Do the same for an upper triangular system. Call
this function solve_uppertriangular.m.

Obviously, do not use the backslash operator (only can be used to checking purposes). It is important to
initialize an array of zeros first. Matab allows one to dynamically extend the length of a vector dynamically,
but this slows down the code.

Can you give a rough estimate of what the computational complexity is of this algorithm depending on
problem size? Use big-O notation.

Solution. Shown below is the code.

-

© ® N O v o~ W N

11
12
13
14
15
16
17
18
19

© W N e oA W N =

=
N = O

[

© 0 N O w ok W N

10

11

12

13

Numerical Mathematics : Homework 2

function [x] = solve_lowertriangular(A, Db)

o

% — Numerical mathematics course 2019 -

o

Find length of vector
n = length(b);

o

Initialize a vector of size n.
x = zeros(n,1l);

o\

The forward substition
x(1) = b(1)/A(1,1);
for k=2:n

% Instead of writing an inner for loop, we can use Matlab's convenient

°
<
S

syntax to extract a sub-part of a matrix as follows:

x(k) = (b(k) - A(k,1:k-1)*x(1:k-1))/ A(k,k);
end
end
function [x] = solve_uppertriangular(A, b)
% — Numerical mathematics course 2019 -

We can use our solver for a lower triangular system by using an exchange

de oo

permutation.
= solve_lowertriangular (A(end:-1:1,end:-1:1),b(end:-1:1));

x

oe

Reverse the order of the entries again.
x = x(end:-1:1);

end

Problem 3

Make a function that finds the LU factorization of a matrix A. Call this function find_LU.m. It should take
as argument a matrix A and return two outputs: the first one should be L and the second one is U. If the
algorithm encounters a zero pivot, make the function print a message. Obviously you should break the loop,

because it make no sense to continue after that.

Solution. Shown below is the code.

function [L, U] = find_LU(A)

o

% — Numerical mathematics course 2019 -

% Initialize an array for L, the A will be converted to U.
L = eye(size(h));
for k = 1:(size(A,1)-1)

% update the entries in L:
if A(k,k) # 0

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

[

© ® N O ok W N

10

12

13

14

Numerical Mathematics : Homework 2

L(k+l:end,k) = A(k+l:end,k) / A(k,k);

else
disp ('Encountered a zero pivot. LU factorization is not possible. Ignore the results.')
break;

end

o

% update the entries of A (or our future U):

A(k+l:end,k+1l:end) = A((k+1l):end, (k+1):end) - L(k+l:end,k) * A(k, (k+1):end);
A(k+l:end,k) = 0;

end

U = A;

end

Problem 4

Use the code written in problem 1 and problem 2 to close the deal. Write a function called solve_linearsystem.m
that solves a square linear system. It should take in two arguments: the first argument is a square matrix A
and the second argument a vector b. The output should be x. You must call the functions you have made

in problems 1 and 2 in your code.

Solution. Shown below is the code.

function [x] = solve_linearsystem(A, b)
SUNTITLED6 Summary of this function goes here

o

% Detailed explanation goes here

% Step 1: Find the LU factorizationn
[L,U] = f£find._LU(A);

o\

Step 2: Forward substitution of L
y = solve_lowertriangular (L,b);

% Step 3: Back substitution of U
X = solve_uppertriangular (U,vy);

end

(extra) Problem 5

Repeat problems 3 and 4, but now add partial pivoting to it. Call the new functions find_LUpartialpivot.m
and solve_linearsystems_partialpivot.m respectively. Note that there is NO NEED to explicitly con-
struct a permutation matrix!

Solution. Shown below is the code.

function [P,L,U] = find.-LUpartialpivot (A)

© 0 N ok W N

=R e
v o= O

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

© 0 N G s W N R

-
o

11
12
13
14
15
16

Numerical Mathematics : Homework 2

oo oo

o

lae]

o

L = eye(size(A));
for k = 1:(size(A,1)-1)
%%% Perform an exchange permutation (i.e. the pivoting part)
% Find the index with the largest entry
[, 1] = max(abs(A(k:end,k))); 1 = 1+k-1;
% update permutation matrix
P([1 k]) = P([k 11);
% exchange rows of A
A(lk 11,:) = A([1 kI,:);
L(lk 11,:) = L([1 k1l,:); L(:,[k 1]) = L(:,[1 k]);
%%% Perform the gaussian elimination step %$%%
% update the entries in L:
L(k+l:end,k) = A(k+l:end, k) / A(k,k);
% update the entries of A (or our future U):
A(k+l:end,k+1l:end) = A((k+1):end, (k+1):end) -
A(k+l:end,k) = 0;
end
U = A;
end
function [x] = solve_linearsystems_partialpivot(A,b)

initialize permutatio matrix,

Initialize an array for L,

Detailed explanation goes here

l:size(A,1);

start with Identity

FIND_.LUPARTIALPIVOT Summary of this function goes here

the A will be converted to U.

o
o
o

% exchange rows of L (notice that in the first iterate it just exhanges zeros

SUNTITLED Summary of this function goes here

3
S

Detailed explanation goes here

% Step 1: Find the LU factorizationn
[P,L,U] = find.LUpartialpivot (&);

o

y =

o

X =

end

Step 2: Forward substitution of L

solve_lowertriangular (L,b (P));

Step 3: Back substitution of U

solve_uppertriangular (U,vy);

L(k+1l:end, k)

* A(k, (k+1) :end);

