
Section 5: Numerical integration

April 14, 2019

In this section we will discuss some of basics principles behind numerical
integration. For many common integrals that appear in practice, it is simply
not possible to get straightforward closed-form expressions. They must ap-
proximated numerically, meaning in an approximative sense. Like we have
mentioned before, our knowledge of polynomial approximation will come in
very handy in the study of numerical integration. In these notes, we will
restrict ourselves to integrals that are defined on some interval of the real
line.

1 Basic methods of numerical integration

Let us start with some of the basics methods which you are probably already
very familiar with. Suppose we want to evaluate the integral:

I =

∫ b

a

f(x)dx.

where f(x) is (for now) assumed to be a continuous function. The first
thing which we may do is to break up the interval [a, b] into equally sized
segments of length (b − a)/n and compute the left-hand Riemann sum (or
the right-hand Riemann sum for that matter):

In =
n∑

i=1

f(xi−1)(xi − xi−1) = (b− a)/n
n∑

i=1

f(xi−1)

1

where;

xi = a+
b− a
n

i.

Naturally, In will converge to I in the limit. But the question is, how fast and
effective is this approach? We may use this result to establish the following
bound:

I − In =

∫ b

a

f(x)dx− b− a
n

n∑
i=1

f(xi−1)

=
n∑

i=1

∫ xi

xi−1

f(x)dx− b− a
n

n∑
i=1

f(xi−1)

=
n∑

i=1

∫ xi

xi−1

f(xi−1) + f
′
(ξ(x))(x− xi−1)dx−

b− a
n

n∑
i=1

f(xi−1)

=
n∑

i=1

∫ xi

xi−1

f
′
(ξ(x))(x− xi−1)dx

|I − In| ≤
n∑

i=1

(
max

x∈[xi−1,xi]
f
′
(x)

)∫ xi

xi−1

|x− xi−1|dx

≤
(

max
x∈[a,b]

f
′
(x)

) n∑
i=1

∫ xi

xi−1

|x− xi−1|dx

≤
(

max
x∈[a,b]

f
′
(x)

) n∑
i=1

1

2

(b− a)2

n2

≤ K
(b− a)2

2n
, K := max

x∈[a,b]
f
′
(x)

Notice how we made use of the mean-value theorem in our analysis. The
error is inverse proprotional with the number of segments in used in the
integration. With some simple adjustments to integration scheme, we can do
a lot better than this. For example, the mid-point rule:

In =
(b− a)

n

n∑
i=1

f (x̂i) , x̂i =
xi−1 + xi

2

2

does already a lot better. Indeed,

I − In =
n∑

i=1

∫ xi

xi−1

f(x)dx− (b− a)

n

n∑
i=1

f (x̂i)

=
n∑

i=1

∫ xi

xi−1

f (x̂i) + f
′
(x̂i) (x− xi) +

f
′′

(ξ(x))

2
(x− x̂i)2dx−

(b− a)

n

n∑
i=1

f (x̂i)

=
n∑

i=1

∫ xi

xi−1

f
′
(x̂i) (x− xi)dx+

∫ xi

xi−1

f
′′

(ξ(x))

2
(x− x̂i)2dx

=
n∑

i=1

0 +

∫ xi

xi−1

f
′′

(ξ(x))

2
(x− x̂i)2dx

|I − In| ≤
(

max
x∈[a,b]

f
′′

(x)

) n∑
i=1

1

2

∫ xi

xi−1

(x− x̂i)2dx

≤
(

max
x∈[a,b]

f
′′

(x)

) n∑
i=1

(b− a)3

24n3

≤ K
(b− a)3

24n2
, K := max

x∈[a,b]
f
′′

(x)

In the analysis above, we made use of Taylor’s remainder theorem which you
probably have learned in your calculus classes:

Theorem 1. Let f(x) be k+1 times differentiable on the inverval [a, b] and
let c ∈ (a, b). Then,

f(x) = f(c) + f
′
(c) + . . .+

f (k)(c)

k!
(x− c)k +

f (k+1)(ξ)

(k + 1)!
(x− c)k

for some ξ ∈ [c, x] if x > c and ξ ∈ [x, c] if x < c.

Notice that the error decays quadratically with the number of segments.
Another method which has a similar performance is the trapezoidal method:

In =
(b− a)

n

n∑
i=1

f (xi) + f(xi−1)

2

To summarize:

3

• Left-hand Riemann sums:

|I − In| ≤ K
(b− a)2

2n
, K := max

x∈[a,b]
f
′
(x)

.

• Mid-point rule:

|I − In| ≤ K
(b− a)3

24n2
, K := max

x∈[a,b]
f
′′

(x)

• Trapezoidal rule:

|I − In| ≤ K
(b− a)3

12n2
, K := max

x∈[a,b]
f
′′

(x)

2 Simpon’s rule: integration using quadratic

interpolation

The previously constructed integration schemes relied on breaking up to do-
main [a, b] into smaller segments. On each segment, the function is approxi-
mated by simple function which consequtively easy to integrate. In the case
of left hand Riemann sums and midpoint rules, we used constant functions,
whereas for the trapezoidal rule we use linear approximations. Nothing is
stopping us from using quadrating interpolants within these segments. A
higher order approximation may yield better results, and this gives rise to
the Simpson’s rule for integration.

To derive simpson’s rule, let approximate the function f(x) by quadratic
interpolation on [a, b]. That is,

f(x) ≈ f(a)
(x− c)(x− b)
(a− c)(a− b)

+ f(c)
(x− a)(x− b)
(c− a)(c− b)

+ f(b)
(x− a)(x− c)
(b− a)(b− c)

where:
c = (a+ b)/2.

4

Integrating yields:

I =

∫ b

a

f(x)dx

≈
∫ b

a

f(a)
(x− c)(x− b)
(a− c)(a− b)

+ f(c)
(x− a)(x− b)
(c− a)(c− b)

+ f(b)
(x− a)(x− c)
(b− a)(b− c)

dx

≈ (b− a)

6
(f(a) + 4f(c) + f (b))

We may do this for every segment, resulting in the (composite) simpson rule

In =
(b− a)

6n

n∑
i=1

f(xi−1) + 4f(x̂i) + f (xi) , x̂i =
xi−1 + xi

2

To establish an error bound. Write:

f(x) = f(x̂i)+f
′
(x̂i)(x−x̂i)+

f
′′
(x̂i)

2
(x−x̂i)2+

f
′′′

(x̂i)

6
(x−x̂i)3+

f (4)(ξ)

24
(x−x̂i)4

Since:

f(xi+1) = f(x̂i)+f
′
(x̂i)

(
b− a
2n

)
+
f
′′
(x̂i)

2

(
b− a
2n

)2

+
f
′′′

(x̂i)

6

(
b− a
2n

)3

+
f (4)(ξ)

24

(
b− a
2n

)4

f(xi) = f(x̂i)−f
′
(x̂i)

(
b− a
2n

)
+
f
′′
(x̂i)

2

(
b− a
2n

)2

−f
′′′

(x̂i)

6

(
b− a
2n

)3

+
f (4)(ξ)

24

(
b− a
2n

)4

we may obtain:

f
′′
(x̂i) = (f(xi+1)− 2f(x̂i) + f(xi))

(
b− a
2n

)−2
− f (4)(ξ)

12

(
b− a
2n

)2

5

Now:

I − In =
n∑

i=1

∫ xi

xi−1

f(x)dx− (b− a)

6n
(f(xi−1) + 4f(x̂i) + f (xi))

=
n∑

i=1

∫ xi

xi−1

f(x̂i) + f
′
(x̂i)(x− x̂i) +

f
′′
(x̂i)

2
(x− x̂i)2 +

f
′′′

(x̂i)

6
(x− x̂i)3 +

f (4)(ξ)

24
(x− x̂i)4dx

−(b− a)

6n
(f(xi−1) + 4f(x̂i) + f (xi))

=
n∑

i=1

f(x̂i)

(
b− a
n

)
+
f
′′
(x̂i)

3

(
b− a
2n

)3

+
f (4)(ξ)

60

(
b− a
2n

)5

−(b− a)

6n
(f(xi−1) + 4f(x̂i) + f (xi))

=
n∑

i=1

f(x̂i)

(
b− a
n

)
+ (f(xi+1)− 2f(x̂i) + f(xi))

(
b− a
6n

)
−f

(4)(ξ)

24

(
b− a
2n

)5

+
f (4)(ξ)

60

(
b− a
2n

)5

− (b− a)

6n
(f(xi−1) + 4f(x̂i) + f (xi))

=
n∑

i=1

f (4)(ξ)

40

(
b− a
2n

)5

=
n∑

i=1

f (4)(ξ)
(b− a)5

720n5

|I − In| ≤ K
(b− a)5

1280n4
, K := max

x∈[a,b]
f (4)(ξ)

3 Quadrature formulas

In the previous sections we have derived some methods of numerical integra-
tion. All of them aimed at approximating the integral by the sum:

I =

∫ b

a

f(x)dx ≈
n∑
i

wif(xi)

The right hand sidea above is called a quadrature sum. The numbers xi ∈
[a, b] are referred to as the quadrature nodes, while the numbers wi ∈ R are

6

called the weights. Quadratures formulas may be constructed in two ways.
The first way is to approximate the function by an interpolating polynomial

f(x) ≈
n∑

i=1

f(xi)Ln−1,i(x), Ln−1,i(x) =
n∏

j=1,j 6=i

x− xj
xi − xj

.

There is freedom in how one should pick the quadrature nodes xi ∈ [a, b].
Once they have been chosen, the weights are found by:

wi =

∫ b

a

Ln−1,i(x)dx

The second way of forming quadratures is to construct lower order interpo-
lating polynomials on subinterval of [a, b]. These are called comoposite rules.
The methods which we have derived so far were all composite rules.

4 Gaussian quadratures: Maximizing degree

of precision

We have now introduced the concept of quadratures, and now big the ques-
tion is how should we pick our integration nodes. For that, let us introduce a
metric to quantify the performance of the quadrature rule. We observe that if
use a degree n interpolating polynomial to construct a quadrature rule, then
the integration will be performed exactly if the integrand is a polynomial of
degree at most n. This motivates the following definition:

A quadrature rule has degree of precision n if the rule integrates
all polynomials exactly upto degree n.

Clearly, if we have n degree interpolation polynomial for our quadrature rule,
the degree should also at least be n. However, we have seen that the simpson
method has the error term:

|I − In| ≤ K
(b− a)5

1280n4
, K := max

x∈[a,b]
f (4)(ξ).

7

Since the fourth derivative of all cubic polynomials are all equal to zero,
it follows that the simpson rule has degree of precision 3. This is more
than 2. Remember, simpson rule used only a quadratic function, which
shows that the degree of precision can be bigger than degree of interpolating
polynomial used. In fact, with a clever choice of nodes, it possible to get a
degree precision of 2n− 1, where n denotes the number of nodes used in the
quadrature formula.

So what should those nodes be to get those nice properties? Let me first
reveal what it should not be: equispaced nodes. Equispaced nodes give rise
to the Newton-cotes formulas. For the closed Newton-cotes formula (where
endpoints are included in the quadrature formua), the degree of precision
n + 1. Aside from that, the method is unstable for higher order polynomial
and with Runge’s phenomenon on equispaced grids thing can easily turn into
a disaster. Instead we should pick something different.

Let us look at the case of n = 2. In this we case we would expect precision
2n − 1 = 2 · 2 − 1 = 3. Hence the quadrature formula should be able to
integrate the integrand:

f(x) = a0 + a1x+ a2x
2 + a3x

3

Restricting ourselves to the integration domain [−1, 1], we obtain: Since:

w1f(x1) + w2f(x2) =

∫ 1

−1
f(x)dx

This yield a set of 4 nonlinear equations with four unknowns:

w11 + w21 =

∫ 1

−1
1dx = 2

w1x1 + w2x2 =

∫ 1

−1
xdx = 0

w1x
2
1 + w2x

2
2 =

∫ 1

−1
x2dx = 2/3

w1x
3
1 + w2x

3
2 =

∫ 1

−1
x3dx = 0

8

it has a unique solution:

w1 = 1, w2 = 1, x1 = −
√

3

3
, x2 =

√
3

3

It turns out that the nodes of the above solution are the Legendre polynomials
of degree 2. This is no co-incidence! Recall that lk(x) for k = 0, 1, 2, 3, . . .
denote the Legendre polynomials which are obtained from the Gram-schmidt
process involving the monomials xk for k = 0, 1, 2, 3, Subsequently,〈

xj, lk(x)
〉

= 0, 0 = j < k.

We have the following theorem:

Theorem 2. A n-point quadrature rule has degree of precision 2n− 1 if the
nodes are selected to be the roots on the n-th legendre polynomial.

Proof. Let P2n−1(x) be a polynomial of degree 2n − 1. We may factor this
polynomial by:

P2n−1(x) = Q(x)ln(x) + r(x).

where Q(x) is a degree n − 1 polynomial, ln(x) is the n-th legendre poly-
nomials (hence degree is n), and r(x) is a polynomial of degree strictly less
than n− 1. By the orthogonality property we know that:∫ 1

−1
Q(x)ln(x)dx = 0.

Hence, ∫ 1

−1
P2n−1(x)dx =

∫ 1

−1
r(x)dx

Now let us apply our n point quadrature rule:

n∑
i=1

wiP2n−1(xi) =
n∑

i=1

wi(Q(xi)ln(xi) + r(xi))

If we choose our nodes to be the roots of the n-the legendre polynomial, we
have: ln(xi) = 0. Therefore:

n∑
i=1

wiP2n−1(xi) =
n∑

i=1

wir(xi)

9

Recall that r(x) was of degree less than n− 1, which means that:

n∑
i=1

wiP2n−1(xi) =
n∑

i=1

wir(xi) =

∫ 1

−1
r(x)dx =

∫ 1

−1
P2n−1(x)dx.

To find the nodes and weights for Gauss-Legendre quadrature formulas, the
following can be done. Define:

βk :=
1

2
√

1− 1
(2k)2

, k = 1, 2, . . . , n.

It can be shown that the Legendre polynomials satisfy the relations:

x



l0(x)
l1(x)
l2(x)

...
ln−2(x)
ln−1(x)


=



0 β1
β1 0 β2

β2 0
. . .

β3
. . . βn−2
. . . 0 βn−1

βn−1 0





l0(x)
l1(x)
l2(x)

...
ln−2(x)
ln−1(x)


+



0
0
0
...
0

βnln(x)


If x1, x2, . . . , xn denote the roots of ln(x), we see that x1, x2, . . . , xn are the
eigenvalues of the matrix above. That is:

xi~vi =



0 β1
β1 0 β2

β2 0
. . .

β3
. . . βn
. . . 0 βn−1

βn−1 0


~vi, i = 1, 2, . . . , n

In other words, solving for the eigenvalues will find us the nodes. As for the
weights, it turns out that these can be computed from the first entries of the
eigenvectors. In particular,

wi = 2([~vi]1)
2.

10

