
Numerical Mathematics:

Homework 6
Due on T.B.D at 24:00pm
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Numerical Mathematics : Homework 6

Problem 1

Let U denote a unitary matrix. By writing U = A+ iB show that the matrix:[
A −B
B A

]
is an orthogonal matrix.

Solution. By definition of being unitary, we have:

I = U∗U = (A+ iB)∗(A+ iB) = (AT − iBT )(A+ iB) = (ATA+BTB) + i(ATB −BTA)

Hence:

ATA+BTB = I, ATB −BTA = 0.

and: [
AT BT

−BT AT

] [
A −B
B A

]
=

[
ATA−BTB −(ATB −BTA)

ATB −BTA ATA−BTB

]
=

[
I 0

0 I

]

Problem 2

Prove that the DFT matrix Fn, as defined in the lecture notes, i.e.

Fn =
1√
n


1 1 1 · · · 1

1 ωn ω2
n · · · ωn−1n

1 ω2
n ω4

n · · · ω
2(n−1)
n

...
...

...
. . .

...

1 ωn−1n ω
2(n−1)
n · · · ω

(n−1)(n−1)
n

 , ωn = e−
2πi
n

is indeed an unitary matrix. Hint! The geometric series:

n−1∑
k=0

rk =
1− rn

1− r
, r 6= 1

is your friend here!

Solution. For k, s = 0, 1, . . . , n− 1 we must show that

1

n

n−1∑
l=0

ω̄kln ω
sl
n =

{
1 k = s

0 k 6= s

But observe that:
1

n

n−1∑
l=0

ω̄kln ω
sl
n =

1

n

n−1∑
l=0

ω(s−k)l
n

If s = k, we have:

1

n

n−1∑
l=0

ω(s−k)l
n =

1

n

n−1∑
l=0

1 = 1

If s 6= k, we have:

1

n

n−1∑
l=0

ω(s−k)l
n =

1

n

n−1∑
l=0

[
ω(s−k)
n

]l
=

1

n

ω
(s−k)n
n − 1

1− ω(s−k)
n

= 0.
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Numerical Mathematics : Homework 6

Problem 3

Let f(x) be a real-valued continuous, periodic function on R. For simplicity, let the period be equal to one.

Suppose we would like to approximate this function by a trigonometric function of the kind:

fm(x) = a0 +

m∑
k=1

ak cos(2πkx) + bk sin(2πkx).

As you already know, there are several ways this can be done. One way is to do interpolation. There are in

total 2m + 1 independent variables to be determined, so we need also 2m + 1 interpolation points. Let us

break up [0, 1) into equal sized segments and choose xk = k
2m+1 for k = 0, 1, 2 . . . ,m as interpolation point

with f(xk) as interpolation values. This would generate a 2m + 1 by 2m + 1 linear system which needs to

be solved. Inverting a linear system the naive way would require O((2m+ 1)3).

(a) Explain how the coefficients a0, ak, bk can be obtained from applying a Discrete Fourier Transform in

O((2m+ 1) log(2m+ 1)). In the explanation, please describe each step of the algorithm (but you don’t need

to explain the details of the FFT algorithm). Hint: use the fact that cos(2πx) = 1
2 (e2πikx + e−2πikx) and

sin(2πx) = 1
2i (e

2πikx − e−2πikx) to rewrite fm(x) in terms of complex exponentials. Then set-up the linear

system which needs to be solved.

Another way of approximating f(x) is through least-squares. That is, for example through minimizing:

E =

∫ 1

0

w(x)

(
f(x)− a0 +

m∑
k=1

ak cos(2πkx) + bk sin(2πkx)

)2

dx

where the weighting function is chosen to be w(x) = 1.

(b) Show that solving the above least-squares problem yields the Fourier series, where:

a0 =

∫ 1

0

f(x)dx, ak = 2

∫ 1

0

f(x) cos(2πkx)dx, bk = 2

∫ 1

0

f(x) sin(2πkx)dx

for k = 1, 2, . . . ,m.

Solution. a) Observe that:

fm(x) = a0 +

m∑
k=1

ak cos(2πkx) + bk sin(2πkx)

= a0 +

m∑
k=1

ak
e2πikx + bke

−2πikx

2
+ bk

e2πikx − e−2πikx

2i

= a0 +

m∑
k=1

ak
e2πikx + e−2πikx

2
+ bk

e2πikx − e−2πikx

2i

=
1√

2m+ 1
(
√

2m+ 1a0) +

m∑
k=1

(
( 1
2

√
2m+ 1)(ak − bki)

) 1√
2m+ 1

e2πikx

+
(
( 1
2

√
2m+ 1)(ak + bki)

) 1√
2m+ 1

e−2πikx

Define:

c0 =
√

2m+ 1a0, ck = ( 1
2

√
2m+ 1)(ak − bki), c−k = ( 1

2

√
2m+ 1)(ak + bki) k = 1, . . . ,m.
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Numerical Mathematics : Homework 6

To yield:

fm(x) =
1√

2m+ 1

m∑
k=−m

cke
2πikx.

The linear system which needs to be solved is:



f (0)

f
(

1
2m+1

)
f
(

2
2m+1

)
...

f
(

2m
2m+1

)


= 1√

2m+1



1 1 1 · · · 1 1 1 · · · 1

1 e
2πi

1
2m+1 e

2πi2
1

2m+1 · · · e
2πim

1
2m+1 e

−2πim 1
2m+1 e

−2πi(m−1) 1
2m+1 · · · e

−2πi 1
2m+1

1 e
2πi

2
2m+1 e

2πi2
2

2m+1 · · · e
2πim

2
2m+1 e

−2πim 2
2m+1 e

−2πi(m−1) 2
2m+1 · · · e

−2πi 2
2m+1

...
...

...
. . .

...
...

...
. . .

...

1 e
2πi

2m
2m+1 e

2πi2
2m

2m+1 · · · e
2πim

2m
2m+1 e

−2πim 2m
2m+1 e

−2πi(m−1) 2m
2m+1 · · · e

−2πi 2m
2m+1





c0
c1
c2
...

cm
c−m
c−m+1

...

c−1


Notice the selected ordering of the columns used. The last m columns can be rewritten as:



f (0)

f
(

1
2m+1

)
f
(

2
2m+1

)
...

f
(

2m
2m+1

)


= 1√

2m+1



1 1 1 · · · 1 1 1 · · · 1

1 e
2πi

1
2m+1 e

2πi2
1

2m+1 · · · e
2πim

1
2m+1 e

2πi(m+1)
1

2m+1 e
2πi(m+2)

1
2m+1 · · · e

2πi(2m)
1

2m+1

1 e
2πi

2
2m+1 e

2πi2
2

2m+1 · · · e
2πim

2
2m+1 e

2πi(m+1)
2

2m+1 e
2πi(m+2)

2
2m+1 · · · e

2πi(2m)
2

2m+1

...
...

...
. . .

...
...

...
. . .

...

1 e
2πi

2m
2m+1 e

2πi2
2m

2m+1 · · · e
2πim

2m
2m+1 e

2πi(m+1)
2m

2m+1 e
2πi(m+1)

2m
2m+1 · · · e

2πi(2m)
2m

2m+1





c0
c1
c2
...

cm
c−m
c−m+1

...

c−1


Which is exactly the inverse DFT matrix! The steps to find a0, ak, bk is now really straightforard. Apply

the DFT to
[
f (0) f

(
1

2m+1

)
f
(

2
2m+1

)
· · · f

(
2m

2m+1

)]T
to find the coefficients ck. Then:

a0 =
1√

2m+ 1
c0, ak =

2√
2m+ 1

Re {ck} , bk =
2√

2m+ 1
Im {ck} .

b) A careful evaluation of the normal equations should generate:

S =


1

1
2

. . .
1
2


which should give the desired result.

Problem 4

Write a function called [X] = fft radix2(x) which implements the base-2 Fast fourier Transform algorithm

to compute the DFT of vector x ∈ Cn. It is highly adviced that you use recursive programming techniques

to keep your life is easy.

Proof. Shown below is the code.
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Numerical Mathematics : Homework 6

1 function [ X ] = fft radix2( x )
2 %UNTITLED2 Summary of this function goes here
3 % Detailed explanation goes here
4

5 X = (1/sqrt(length(x))) * fft unnormalized(x);
6

7

8

9 function [X] = fft unnormalized(x)
10

11 if length(x) == 1
12 X = x;
13 else
14

15 if rem(length(x),2) 6= 0
16 disp('Warning: length of vector is not a power of 2.')
17 end
18

19 yt = fft unnormalized( x(1:2:length(x)) );
20 yb = fft unnormalized( x(2:2:length(x)) );
21

22 d = transpose( exp( -2*pi*1i* (0:1:(length(yt)-1)) / length(x) ) );
23

24 z = d .* yb;
25

26 X = [yt+z;
27 yt-z];
28

29 end

Problem 5

Let Zn be a n by n (permutation) matrix defined by:

Zn =


1

1

1
. . .

1


(a) Explain what Zn does to the entries of a vector under matrix vector multiplication.

(b) Show that the columns of the DFT matrix are the eigenvectors of Zn. What are the corresponding

eigenvalues? Write the matrix in the form AFn = FnΛ, where Λ is a diagonal matrix with eigenvalues on

the main diagonal.

The following matrix:

C(a0, a2, . . . an−1) =



a0 an−1 · · · a3 a2
a1 a0 an−1 a3
... a1 a0

. . .
...

an−2
. . .

. . . an−1
an−1 an−2 · · · a1 a0


5



Numerical Mathematics : Homework 6

is called a Circulant matrix. The name is derived from the fact that each consecutive column is a cyclic per-

mutation of the previous column. Notice also that the entries of the matrix are constant along the diagonal,

i.e. it is a special case of a Toeplitz matrix.

(c) Show that the columns of the DFT matrix are also the eigenvectors of C(a0, a2, . . . an−1). Use the

decomposition:

C(a0, a2, . . . an−1) =

n−1∑
k=0

akZ
k
n

Of course, you must also explain why the above decomposition is correct.

(d) Confirm that:

C(a0, a2, . . . an−1) = FnDF
∗
n , D = diag(

√
nF ∗na)

where a =
[
a0 a1 · · · an−1

]T
.

Solution. a) It circularly permutes/rotates the entries of a vector.

b) Let Fn =
[
fn,0 fn,1 · · · fn,n−1

]
. Then it is easy to verify that:

Znfn,k = e
2πi
n kfn,k k = 0, 1, . . . , n− 1.

c) This fact follows from:

C(a0, a2, . . . an−1) =

n−1∑
k=0

akZ
k
n =

n−1∑
k=0

ak(FnΛF ∗n)k = Fn(

n−1∑
k=0

akΛk)F ∗n

d) A closer look at:

D =

n−1∑
k=0

akΛk

should reveal this fact.

Problem 6

Let a, b : Zn 7→ C be two signals on the integers modulo n. That is,

a[k] = ak, for k = 0, 1, . . . , n− 1 and a[k mod n] = a[k].

and similarly for b[k]. Convolution c = a ∗ b is defined as the operation:

c[k] =

n−1∑
l=0

a[k − l]b[l]

where c : Zn 7→ C is another signal defined on the integers modulo n.

(a) Show that the operation of convolution is commutative, i.e. c = a ∗ b = b ∗ a.

(b) Show that convolution of a n-periodic signal can be expressed as a multiplication with a circulant ma-

trix. Given the commutativity of the operation, there are two ways to do this. Describe both.
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Numerical Mathematics : Homework 6

Since convolution can be written as a matrix vector product, the naive approach would generally require

O(n2) operations to convolve two n-periodic signals.

(c) Given the results derived in the previous problem and your knowledge about FFT algorithms. Describe

a O(n log n) method that does the job more efficiently. Implement this algorithm. Call this function [c]

= convolve periodic(a,b). For convenience, please use the built-in FFT code. Keep in mind that this

version of the FFT is normalized differently.

Solution. a) A simple change of variables should do the trick.

b) Let a =
[
a0 a1 · · · an−1

]T
and b =

[
b0 b1 · · · bn−1

]T
. Then c =

[
c0 c1 · · · cn−1

]T
is defined

as:

c = C(a0, a2, . . . an−1)b = C(b0, b2, . . . bn−1)a

c) This can simply done by evaluating a series of three FFTs. Let:

â =
√
nF ∗na, b̂ = F ∗nb

Then define ĉ as the product of â and b̂, i.e. c[k] = a[k]b[k]. Then:

c = Fnĉ.

Shown below is the code.

1 function [ c ] = convolve periodic(a,b)
2 %UNTITLED Summary of this function goes here
3 % Detailed explanation goes here
4

5 n = length(a);
6 c = (1/sqrt(n))* fft( (n* ifft(a) ) .* ( sqrt(n)* ifft(b)) );
7

8 end

Problem 7

There are many applications to convolution, notably in signal processing and digital image processing.

However, convolution (and in particular the efficient numerical implementation of convolution) has even

applications in areas as fundamental as multiplying two large integers. Note that a n-digit (positive) integer

can be decomposed as

a =

n−1∑
k=0

ak · 10k, b =

n−1∑
k=0

bk · 10k

We may write:

c = ab =

2n−1∑
k−0

ck · 10k =

(
n−1∑
k=0

ak · 10k

)(
n−1∑
k=0

bk · 10k

)

(a) Write the above as a matrix vector product. What is special about the entries of the matrix?

(b) Explain how one can be embed the matrix-vector mulplication of question (a) into a larger matrix-vector

product involving a Circulant matrices.
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(c) Discuss the savings that are made by using the FFT algorithm. What concerns should be taken into

regard concerning floating point arithmetic?
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