
Numerical Mathematics:

Homework 5
Due on T.B.D at 24:00pm
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Numerical Mathematics : Homework 5

Problem 1

In this problem, we are going to build our own “software” to do numerical integration.

(a) Write a function which applies the Simpson’s rule to evaluate an integral between −1 and 1. Call

it [ I ] = simpsonquadrature( f , n ). The first argument is a function itself, the second argument

denotes the number of segments (i.e. no. of piewise quadratric functions) in which the interval is divided.

You can test your code by making quick simple inline functions using the @ symbol (please look into the

documentation about this).

(b) Do the same, no but now for Gaussian quadrature method. Call it [ I ] = gaussianquadrature(

f , n ). The second argument n implies that the n roots of the n-th Legendre polynomials are used as

absiccas. As explained in class, find the roots of the n legendre polynomials by finding the eigenvalues of

the appropriate matrix. You can use the eig command for that. The weights are found by looking at the

first entries of the corresponding eigenvectors.

(c) Can you explain how one could use the written matlab functions to evaluate integrals on a different

interval, without making adjustments to the underlying code? Hint: apply a transformation to the function.

Problem 2

Consider the following two integrals:

I1(x) =

∫ 1

−1
e−x

2

dx, I2(x) =

∫ 1

−1
1− |x|dx

Notice that the integrand of the first integral is “smooth”, whereas the second integral has a kink at the origin.

(a) Write a matlab function which evaluates the above integrals, for let’s say, up to n = 300. Consider

the absolute difference between the numerical approximation and the true value of the integral. Plot this

error as a function of n, by using a log scale for the y axis. Generate this graph for both methods: Simpson

and Gaussian (add legends to denote which is which). Adapt the following structure: call the function [ ]

= plotconvergence( func ) , if func=1 it should plot the first integral, and if func=2 is should plot the

second integral.

(b) To gain better insights on what is happening with the evaluation of the second integral, let us gen-

erate a plot of the actual function that is being integrated by the integration scheme. In particular, let

us plot the difference between 1 − |x| and the numerically integrated function. Call the function [ ] =

ploterrorfunction( method, n ) which generates this plot. If method=’simpson’ consider the simpson

and if method=’gaussian’ consider gaussian quadratures. Notice that for the simpson rule, you can simply

write the error function by hand. Also, note that the the Lagrange interpolation function which you wrote

in homework 3 may come in handy now. You can just copy it as a subroutine into your file.

(c) Explain your observations of the results in question a and question b. Be as detailed as possible. For

example, when does Gaussian do well, and when does it not? What is causing the problem?

2



Numerical Mathematics : Homework 5

Problem 3

Consider the trapezoidal rule:

In =
(b− a)

n

n∑
i=1

f (xi) + f(xi−1)

2

Establish the error bound:

|I − In| ≤ K
(b− a)3

12n2
, K := max

x∈[a,b]
f
′′

(x)

Hint! use integration by parts to show that:

I − In =
(b− a)

n

n∑
i=1

f (xi) + f(xi−1)

2
−

n∑
i=1

∫ xi

xi−1

f(x)dx =

n∑
i=1

∫ xi

xi−1

(x− x̂i)f
′
(x)dx, x̂i :=

xi−1 + xi
2

then apply integration by parts again and do some standard shenanigans.

Problem 4

The Laguerre polynomials a0(x), a1(x), a2(x), . . . form an orthogonal set on [0,∞) and satisfy:∫ ∞
0

e−xai(x)aj(x)dx = 0, i 6= j.

The polynomial an(x) has n distinct zeros x1, x2, . . . , xn on [0,∞). Construct a n-point quadrature formula

that evaluates:

I =

∫ ∞
0

e−xf(x)dx

and has precision 2n− 1. You must prove the statement that your quadrature formula has precision 2n− 1.

Problem 5

In this problem we are going to learn how quadratures can be used to solve a type of equation which arises

very often in practical applications. Let f(x) be a function defined on [0, 1], K(x, y) be a function defined

on [0, 1]× [0, 1], and λ ∈ R+ some positive real parameter. Consider the following equation:

u(x) = λ

∫ 1

0

K(x, y)u(y)dy + f(x)

where u(x) is the unknown to be determined. Notice in particular that u(x) appears on both the left hand

side and inside the integral. Such equations are called integral equations (as opposed to differential equa-

tions!). In particular, the equation above is a so-called Fredholm integral equation of second kind. Such

problems show up regularly in mathematical physics.

Consider, for example, the following simple boundary value problem:

d2u(x)

dx2
= λu(x) + 1, u(0) = 0, u(1) = 0

It can be shown that the solution u(x) to the above equation must satisfy the fredholm equation with:

K(x, y) =

{
x(y − 1), 0 ≤ x ≤ y
y(x− 1) y ≤ x ≤ 1

, f(x) =
1

2
x(x− 1)
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(a) The exact solution to the concerning boundary value problem is given by:

u(x) = c1e
√
λx + c2e

−
√
λx − 1

λ
,

[
c1
c2

]
=

[
1 1

e
√
λ e−

√
λ

]−1 [
1
λ
1
λ

]
Verify this by substituting this into the differential equation and checking for the boundary conditions.

We are going to write numerical code to solve the Fredholm equation (and hence, also the boundary value

problem). For this, we will be using quadratures. Let xi := i/n for i = 0, . . . , n and consider:

u(xi) = λ

∫ 1

0

K(xi, y)u(y)dy + f(xi).

Apply the trapezoidal rule by selecting the points yi = xi := i/n for i = 0, . . . , n to yield:

u(xi) =
λ

n

n−1∑
i=0

1

2
(K(xi, yi)u(yi) +K(xi, yi+1)u(yi+1)) + f(xi)

(b) Let un =
[
u(x0) u(x1) . . . u(xn)

]T
and yn =

[
y(x0) y(x2) . . . y(xn)

]T
. Write down the corre-

sponding linear system which needs to be solved.

(c) Write a matlab function called [ ] = solveFredholm(lambda, n ) to solve the integral equation. The

function should only return a plot showing the error between the true solution and the approximate solution

obtained from solving the integral equation. It may be handy to use the matlab routine interp1 to subtract

the two solutions.
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