
Numerical Mathematics:

Homework 1

1



Numerical Mathematics : Homework 1

Problem 1

Prove that for any ε > 0, n1+ε /∈ O(n log n) (but n log n ∈ O(n1+ε)). Hence, n1+ε grows asymptotically

faster than n log n.

Problem 2

For the DC circuit shown here, Kirchhoff’s Rules and Ohm’s Law tell us the following relationships between

the currents I1, I2, I3, I4, the resistances R1, R2, R3, and the voltage V provided by the battery:

I2 + I3 = I1

I2 + I3 = I4

I1R1 + I3R3 = V

I1R1 + I2R2 = V

Submit a function find_current.m which takes as inputs the values for V , R1, R2, and R3 (in that order),

and returns as output a column vector containing the values of the currents I1, I2, I3, I4 (again, in that same

order). You are allowed to use the backslash operator here if you want!

I3

V

I1 I2

R1 R2

R3

I4

Problem 3

In this problem, you are going to get practice in plotting functions. Consider the signal:

x = sin(50πt) +
1

4
sin(226πt) + (1/100)t2

(a)

Build a function called PlotSignal.m which plots this curve on the interval 0 ≤ t ≤ 0.1. Use an increment

of ∆t = 0.001. Create this signal by first allocating a vector of zeros for x and then use a for loop to fill in

the vector. Plot the function (x(t) in the vertical axis, t in the horizontal axis). Give the figure a title called

’signal’, add labels in the x-axis (’t’) and y-axis (’x(t)’). Note that PlotSignal.m doesn’t have any inputs

2



Numerical Mathematics : Homework 1

and outputs.

(b)

Do the same as in part IIa, but now vectorize the code. That is, use the element-by-element oper-

ation wherever it is necessary so that you no longer need to use a for loop. Call this new function

PlotSignal vectorized.m.

Problem 4

Make a function calld evaluate pi.m which plots the evaluates π using the formula:

π

2
= 1 +

1

3
+

1 · 2
3 · 5

+
1 · 2 · 3
3 · 5 · 7

+
1 · 2 · 3 · 4
3 · 5 · 7 · 9

+ . . .

The function must take as argument n, the number of terms in the sum. Code it efficiently!

(extra) Problem 5

Apply Horner’s method to evaluate a polynomial of the form:

p(x) = a0 + a1x+ a2x
2 + . . .+ anx

n

In other words, by rewriting the polynomial into the form:

p(x) = a0 + x(a1 + x(a2 + x(a3 + x(· · · (an−1 + anx) · · · ))))

we can introduce the variables:

bn := an

bn−1 := an−1 + bnx

...

b0 = a0 + b1x

to evaluate the polynomial efficiently. Write a MATLAB function called poly eval horner.m which eval-

uates a polynomial of degree n using Horner’s iteration scheme. Use the following structure: function

[pofx] = poly eval horner(x,a) where x is a scalar input, a is a column (or row) vector of size n+1 with

the coefficients a0, a1, . . . , an in it, and pofx is the function value p(x).

3


