Section 2: Gaussian elimination and LU
solvers
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In this section, we will address how to solve the equation:
Axr=b

where A is a n by n invertible matrix. Given b (or multiple b’s), we would
like to find . Many problems of numerical analysis (and math in general)
involve some inversion of a linear system. For now, we will look into a direct
method of solving a linear system. Later in the course, we will introduce the
concept of iterative solvers as well.

1 Solving triangular systems

Before we attempt to solve the general case, it is wise to first see how we
can solve Axr = b assuming some special structure to A. The strategy later
would be to reduce the general to this special case as a means to solve the
problem overall. Let us considering following linear system of equations:
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0 0 0 - apnl| |Zn bn,



The matrix A is a triangular matrix. All the entries below the main diagonal
are equal to zero. Having this particular zero structure certainly simplifies
the solution. From the last equation, we can already find an expression for
the last variable z,,, i.e.
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Now that we know what x,, is, looking at second last equation:
Un—1n—1Tn—1 + Gp_1,nT1 = bp_1

we also have an expression for z,,_; in terms of known quantities:
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I guess the idea should be clear now. The general process looks as follows:
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This whole process is called back-substitution. Notice that if one of the
diagonal entries are equal zero, we will run into trouble in the algorithm. This
makes sense, because A would be no longer invertible. A similar algorithm
can also be conveived for lower triangular matrices:

a1 0 0 s 0 T bl
azy azp 0 - 0 T by
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The corresponding iterations are called forward substitution. We will leave
to the reader to work out those details.

2 LU factorization: gaussian elimination in
disguise

In a considerable number cases (but certainly not all, as we will seel) it
is possible to factor a square invertible matrix into a product of a lower
triangular matrix and an upper triangular matrix. The factorization looks

like:

1 0 o - 0 U1 U2 U3 - Uin

12,1 1 0 0 0 Ug2 U233 - Uzp

A=LU = l371 l372 1 - 0 0 0 Uzs - Usn
_ln,l ln,2 ln,3 e 1_ i 0 0 0 e un,n_

Notice above that the main diagonal entries of L are all equal to one. This
factorization of a matrix may appear to you as some new concept, but rest
assured, you have been already working with this factorization indirectly in
your basic linear algebra classes.

Gaussian elimination. It turns out that the LU factorizatio is basically
Gaussian elimination in disguise. To refresh, let us consider the following 3
by 3 system of equations:

201 + 319 + bzy = 4
4%’1 + 21}2 + 2.1'3 = 1
—2;U1 + 3%2 + r3 = —2

How do you solve this system? As you may know, one way to go about it is
to do a sequence of eliminations to reduce the problem to something simpler.
Simultaneously, we can do the following two operations:

e Multiply the first equation by 2 and subtract it from the second equa-
tion.



e Multiply the first equation by unity and add it to the first equation

This yields the equivalent system:

2x1 + 3xs 4+ bxs = 4
— 2!132 — 81}3 = -7
6xy, + 63 = 2

Next we do the following operations:

e Multiply the second equation by three and add it to the second equa-
tion.

This yields the equivalent system:

2$1 + 31’2 + 5$3 = 4
—21‘2 - 81‘3 = -7
301‘3 = 19

Now we have an upper triangular system. The back-substitution algorithm
can be used to further solve the problem.

The LU factorization. The row reductions steps applied to the system
of equations are invertible linear operations and can be expressed in matrix
language. Indeed, in matrix notation the example of the previous paragraph
is written as:

2 3 5 o 4
4 2 2| |z = | 1
—2 3 1| |3 2

1 0 0][2 3 5][n 1 0 0][4
2 1 0| |4 22| |z = [-2 101
10 1] |-2 3 1] [ 10 1] |2

2 3 5] [=] [ 4

0 —2 =8| 22| = |7

0 6 6] | 2
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The second elimination can be expressed as:

1 00][2 3 57 [mn 1 0 0] [4
01 0|0 —2 =8| |z = |01 0f -7
03 1] [0 6 | |zs] 0 3 1] [ 2

(2 3 57 [ [ 4

0 —2 =8| |z = |-7

0 0 30 |5 | 19

As we have mentioned before, the LU factorization is basically this process
in disguise. It may already be clear what U should be, but where is the L?
Well, let us look at the first and second elimination step combined:

2 3 5 1 1 00 1 00 4
0 -2 —8| |z2| =10 1 0] |—-2 1 0 1
0 0 30 T3 0 31 1 0 1] [-2
Let us rewrite this as follows:
1 00 '[tool"2 3 57/[xn 4
-2 10 010 0 -2 =8| |z =11
1 01 0 3 1 0 0 30 T3 -2

The inverses for the above matrices are easy to find, they are simply:

~1 -1

1 00 1 00 100 1 0 0
-2 10 =12 1 0], 010 =10 1 0
-1 0 1 -1 0 1 0 3 1 0 -3 1
Multiplying these two matrices is also easy:
1 0 01 0 O 1 0 0
2 1 0|0 1 0|l={(2 1 0
-1 0 1] |0 =3 1 -1 -3 1
We have obtained the LU factorization:
1 0 0|12 3 b5 1 4
2 1 0|0 =2 =8| |z =11
-1 =3 1|10 0 30| |z3 -2



The “general” case. Let us generalize this process. For the matrix:

1,1 Air2 @13 - QAip

Q21 Q22 A3 -+ d2n
A= |a31 Q32 a33 --- a3n

_an,l Qp2 Ap3 - an,n_

The first elimination cycle is done by applying the transformation:

1 0 0 07
2110 0 0
asz1

Ll _ E 01 --- 0
vl g0 --- 1
Lai,1 .

This is called a Gauss transform. The inverse of a Gauss transform is easy
to compute:

[ 1 0 0 07
a1
_ﬁ 10 --- 0
Ly = |—ar o1 -0
B S O T I |
L ai i -

Now, we apply the oldest trick in the book:
A= L L7'A=Li(L7'A) = L, AD,
It should be clear that:
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The equation above appears so frequently in linear algebra that is has a name:
the Schur complement. The first step of Gaussian elimination is complete.
The matrix A has been factored as:

1 0 0 01 [a11 a2 aiz -+ aiy]
az, 1 1 1
b 00 OO g e
az1
A= LlA(l) = |a. 01 -0 0 a3y azy asn
_ﬁ 00 - 1] [0 anl,)2 an% . an{%_

We can now proceed to the second elimination cycle. Our second Gauss
transform looks like as follows:

1 0 0 0
o 1 0 - 0
0 “gl,% 1 0
Ly = a5
a‘l)
n,2
0 a(—l’) 0 1
L 2,2 i
Indeed,
A = L,AD
== LngA()
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where:
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Multiplying two Gauss transforms is easy:
"1 00 o (1 0 0 o] [ 0 0 0]
a
o o 1 0 --- 0 ﬁ 1 0 -0
o, L0 -0 al!) D)
Lily=[or 01 oo |0 o b Oh ey g b 0
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0 0 1 An2 n,1 9n2
Lai,1 - -O aglg 0 ].- _al,l @ 0 1-

Overview. Let us summarize the first two steps we have done so far. From
there it should be clear how the remaining steps are executed. The first two



steps were:
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Notice that the identity matrix on the left is slowly shaping into the L matrix,
while A is being transformed into U. We will leave the extrapolation of the
remaining steps to the reader.



Solving the linear system. So now that we have factored A = LU, how
to we proceed in solving Ax = b? Well, that would be easy. From:

LUx =0

Introduce y = Ux to obtain:
Ly=1»

First obtain y using forward substitution. Then solve y = Uz using back-
substitution.

Disclaimer: LU factorization is not always possible. Look at the
following matrix:

0 3 5 T 1
4 2 2| |z = |2
-2 3 1 T3 3

This matrix does not have an LU factorization. Apply the first step of
Gaussian elimination, and you will see a division by zero immediately. The
matrix is invertible, so what is really going on? Well, nothing really. We just
need to re-order the linear equations. Notice that we have the equations:

3rs + bry = 1
— 2.%‘1 + 3$2 + r3 = 3

But this is the same as:

3ryg + by = 1
— 2.T1 + 3.732 + T3 = 3

This re-ordering trick is the way to go in general (if we cannot fix it with
a re-ordering, we actually have non-invertible matrix). The re-ordering of
equations can be expressed in matrix language. Let:

010
P=1|100
001

10



What we have done is that we have multiplied our linear system by:

0 3 5] [x 1
Pl4a 2 2| |x|l=P|2
—2 3 1| |3 3

It turns out that this re-ordering of equations is not only required to make
an LU factorization feasible, but also necessary in order to contain numerical
issues.

3 Numerical aspects and the need for pivot-
ing

So far we have not discussed the numerical aspect of implementing an LU
factorization code in practice. It turns out that there are quite some stability
issues to be concerned about. Let us look at the following example:

10720 1
=]

In exact arithmetic, we obtain:

1 0 1070 1
L= {1020 11’ U= [ 0 1—10201

In floating point arithmetic, we obtain

A 10 ~ 10720 1

L= [1020 1] U= { 0 —1020]
Notice that the (2,2)-entry of U has been modified to 10?°. The effect of the
small number 1 has been absorbed by the larger number 10?°. If the machine
precision is 10716, the relative error between 10%° and 1 — 10?" is after all too
small to be captured with floating point numbers. On first hand, this little
perturbation does not seem like an issue. But if we multiply L and U with
each other retrieve our original matrix, we see that (under exact arithmetic

again):
R A —20
imto [0 ]



This is a drastic change! Catostrophic cancellation has occured. The cul-
prit causing these huge discrepencies is division by small numbers. These
divisions generate large entries in L and U, causing all kinds of headaches.

The numbers which we divide by are called pivots. The problem can be
resolved by selecting another pivot through exchanging rows or columns, in
fact). This is called pivoting. Indeed, by choosing:

S

11 1 01 1
PA= [1020 1] = LU= [1020 1] [o 1- 1020}

Under floating point arithmetic, we would have:

. 1 0] ~ 11
L:Lo—m 1}’ U‘{o 1}

Again in the (2,2)-entry of U, the smaller number 107" is absorbed by the
much larger number 1. But this time around, things are not as bad (under
exact arithmetic again):

T 1 0]f1 1 1 1
PA=LU= {10—20 1} [o 1] B {10—20 10720 + 1]

It is important to note that this phenomen we see here is not a consequence of

ill conditioning. You can check for yourself that the matrix in our example
is well conditioned. The problem is really in the algorithm that we have
proposed. In fact, the standard LU factorization algorithm is numerically
unstable. Pivoting is really needed to stabilize the algorithm. This is what
we will discuss next.

4 LU factorization with partial pivoting

The minimize the effects of floating point arithmetic, we must choose the
largest pivot possible through an appropriate row interchange. This should
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be done at every step of Gaussian elimination. When this is done, it turns
out that we can find a permutation matrix P such that:

PA=LU (1)

Let us talk about permutation matrices first.

Permutation matrices. When we would like to describe row interchanges
or column interchanges of matrices, permutation matrices offer a conve-
nient notation to describe them. A permutation matrix is basically some
re-ordering (i.e. a permutation) of the columns of the idenity identity ma-
trix. Here is an example:

1000 0010
0100 0001
= 001 0’ P= 0100
0001 1 000

The fourth column of the identity matrix is placed first, the third column
is placed second, the first column is placed third, and the second column is
placed fourth. Multiplying a matrix A by P from the right will exchange the
columns of A in that second specific order. Multiplying a matrix from the
left would exchange the rows. Please try it yourself to be convinced.

Permutation matrices are nice. The inverse of a permutation matrix is its
transpose, i.e. PP = I. Also, multiplying two permutation matrices yields
another permutation matrix. The P matrix in (1) is, in fact, obtained from
multiplications of simple permutation matrices: so-called exchange permu-
tations. These permutations just exchange or “swap” to columns/rows of
matrix. Here is an example of an exchange permutation:

0100
1 000
P_0010
0001

It swaps the first two columns/rows of a matrix. Our previous example was
not an exchange permutation. Exchange permutations are used to describe
the pivoting.

13



Partial pivoting through an example. Let us look at the following
matrix:

O W= O

11
3 3
79

ot — O

A:
6 79 8

as an example to illustrate how partial pivoting works. The general algorithm
should be clear from the steps we apply to this specifc example.

100 0][21 1 0]
4 - (0100 4 3 3 1
— oo 10|87 95
000 1][6 79 8
1000 2 110 0010
i |01 00| opp |43 31 o100
= BP0 1 ol s 79 5] A=11000
0001 6 7 9 8 0001
1000 2110
o 010 0| 4 3 31
= N P10010P1 P18795
0001 6 7 9 8
1 0 0 0][8 7 9 5
_ pr|01 004331
— 1loo 10|21 10
000 167938
Now we apply the Gauss transform:
1000
1100
Ll_%()lo
200 1

14



Notice that all factors in the Gauss transform are of magnitude less than 1.

This is a consequence of partial pivoting. Anyway,
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Now we do another exchange permutation.
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We are ready to apply another Gauss transform:

This yields:
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Our final exchange permutation goes as follows.
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The last Gauss transform is:

1000
010 0
=100 1 0
1
0011
This yields:
1 0 0 0][8 7 9 5
¢ 1L oo|f0of § *
A = (P3P2P1)T % _% 1 ol lo 6 _4$ _4%
2 3 2 4
s —5 0100 =% 7
1 0 0 0] 8 7 9 5
S 1 00 _0121_7
:(P3P2P1)T§_2 10L3L3108_4§ 4
§ I [
5 —7 0 1 00 -7 3
(1 0 0 0][8 7 9 5
S 1 00 o *T 98 W7
= (PSP?PI)TE 2 4 46 42
T B R
s —7 5 100 0 3
1 000][too0O0][0o010 0010
0100/]/0001/]0100 0001
P_P3P2P1_0001 0010|1000 (0100
00 10/]l0100[|0001 1000

Solving the linear system. Once we have obtained P, L and U. Solving
the linear system is not much different. Simply multiply Az = b by P from
the left on both sides to yield:

PAx = Pb

. But since PA = LU, we have LUx = Pb. Now continue as we did before!
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