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February 28, 2019

1 Polynomial interpolation: the basics

Let us look at the following problem. Suppose we are given the data points
(x1, y1), (x2, y2), ..., (xn, yn). Can we find a polynomial which passes through
exactly all the points? Such an polynomial is called an interpolating polyno-
mial. Let

Pn−1(x) = a1 + a2x+ a3x
2 + . . .+ anx

n−1

denote a polynomial of degree n − 1. The degree is equal to n − 1 since
the highest power is equal to n − 1. It requires n coefficients to uniquely
describe a polynomial of degree n − 1. This is because the terms xk (also
called monomials) for k = 1, 2, . . . , n− 1 are linearly independant from each
other. After all, there exist no coefficients c1, c1,..., ck−1 for which xk =
c1 + c2x+ c3x

2 + . . .+ ckx
k−1.

Given this observation, one may wonder that a polynomial of at least degree
n − 1 is needed to pass through all n data points. This answer is correct
under some additional conditions. The best way to show this, is to go on and
attempt at solving for the interpolating polynomial. We have the following
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equations to look at:

a1 + a2x1 + a3x
2
1 + . . .+ anx

n−1
1 = y1

a1 + a2x2 + a3x
2
2 + . . .+ anx

n−1
2 = y2

...

a1 + a2xn + a3x
2
n + . . .+ anx

n−1
n = yn

In matrix notation, this can be expressed as:
1 x1 x21 · · · xn−11

1 x2 x22 · · · xn−12
...

...
...

...
1 xn x2n · · · xn−1n



a1
a2
...
an

 =


y1
y2
...
yn


The matrix above is called the vandermonde matrix, the vandermonde ma-
trix associated with the monomial basis to precise. This matrix is square,
but we do not know if it invertible. If it is, we have found the unique interpo-
lating polynomial of degree n− 1. Uniqueness follows from the fact that the
matrix inverse is unique, and from our earlier discussion concerning linear
independence of the monomial terms. The vandermonde matrix is invertible
under very mild conditions.

Theorem 1. The vandermonde matrix:

Vn−1(x1, x2, . . . , xn) =


1 x1 x21 · · · xn−11

1 x2 x22 · · · xn−12
...

...
...

...
1 xn x2n · · · xn−1n


is invertible if, and only if:

xi 6= xj, whenever i 6= j.

Proof. A matrix is invertible if, and only if, its determinant is non-zero. The
determinant of the Vn−1(x1, x2, . . . , xn) turns out to be equal to:

detVn−1(x1, x2, . . . , xn) =
∏

1≤i<j≤n

(xj − xi) =
n∏
j=1

(
j−1∏
i=1

(xj − xi)

)
From here, the condition xi 6= xj, whenever i 6= j follow trivially. The hard
part is to show that the above expression for the determinant is correct.
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Lagrange interpolation formula. Inversion of the vandermonde matrix
requires work, and is not the best way to find the unique interpolating poly-
nomial. Lucky for us, a polynomial does not always have to be expressed in
terms of the monomial terms xk. Let’s look at the following construction:

P (x) = y1
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
+ y2

(x− x1)(x− x3)
(x2 − x1)(x2 − x3)

+ y3
(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
.

Notice when x = x1, we see that the second and third term are equal to zero:

(x− x1)(x− x3)
(x2 − x1)(x2 − x3)

∣∣∣∣
x=x1

= 0,
(x− x1)(x− x2)

(x3 − x1)(x3 − x2)

∣∣∣∣
x=x1

= 0

whereas the first term equals:

(x− x2)(x− x3)
(x1 − x2)(x1 − x3)

∣∣∣∣
x=x1

= 1

This yields P (x1) = y1. Likewise, P (x2) = y2 and P (x3) = y3.

This clever construction can be generalized and is called the Lagrange inter-
polation formula. Call:

Ln−1,k(x) =
n∏

j=1,j 6=k

x− xj
xk − xj

and notice that:

Ln−1,k(xl) =

{
1 k = l

0 k 6= l

Expressing our interpolating polynomial as:

Pn−1(x) =
n∑
k=1

akLn−1,k(x)
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The vandermonde matrix in terms of the Lagrange polynomials is equal to:
Ln−1,1(x1) Ln−1,2(x1) Ln−1,3(x1) · · · Ln−1,n(x1)
Ln−1,1(x2) Ln−1,2(x2) Ln−1,3(x2) · · · Ln−1,n(x2)

...
...

...
...

Ln−1,1(xn) Ln−1,2(xn) Ln−1,3(xn) · · · Ln−1,n(xn)



a1
a2
...
an

 =


y1
y2
...
yn




1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

...
0 0 0 · · · 1



a1
a2
...
an

 =


y1
y2
...
yn


We see that ak = yk, and voila:

Pn−1(x) =
n∑
k=1

ykLn−1,k(x) (1)

is our interpolating polynomial.

Newton divided difference. There are other ways of describing the in-
terpolating polynomial apart from (1). Newton’s divided difference formula
is one of them. We won’t be covering them during this course.

2 Approximating functions through polyno-

mial interpolation

Let us bring a new dimension to our interpolation problems. Suppose that
the values y1, y2, ...,yn are obtained from some continuous function f(x).
That is, y1 = f(x1), y2 = f(x2), ..., yn = f(xn). We can ask some interesting
questions from here. Most notably, is it generally true that as we sample more
points from the interval [a, b], the resulting interpolating polynomial becomes
a better approximation of the original function. As you may imagine, such
a result can be extremely useful. Polynomials are, for example, extremely
nice objects for differentation and integration. If we can use polynomials to
approximate other more complicated functions, we can use them as a proxy
to differentiate and integrate those complicated functions approximatively.

4



Weierstrauss’s result. One question we must ask beforehand is whether
it is even possible to approximate arbitrary function through polynomial. We
have the classic result, due to Weierstrauss.

Theorem 2. Let f(x) be a continuous function on [a, b]. And let Pn(x)
denote a polynomial of degree n, then there exists a sequence P1, P2, ... such
that:

lim
n→∞

max
x∈[a,b]

|f(x)− Pn(x)| = 0

Proof. There are several ways to prove this. One constructive proof is through
Bernstein polynomials, which will be one of the extra homework problems
during this course.

The theorem above does not imply necessarily an interpolating polynomial,
which is just one of way constructing a polynomial approximation to a func-
tion. The theory of Bernstein polynomials presents another way of approx-
imating polynomial. Later on, we will discuss how one can find the best
approximating polynomial in the 2-norm. For now, just keep in mind that
the subject of approximation theory is a vast one, and we only scratched the
surface.

Lagrange error formula. Coming back to our discussion on interpolating
polynomials. Let us move on and derive an useful formula which can be used
to describe the error between the interpolating polynomial and the function
itself.

Theorem 3. Let f(x) be a n times differentiable function on [a, b] and let
Pn−1(x) be the interpolating polynomial of degree n − 1 with interpolation
points a ≤ x1 < x2 < . . . < xn ≤ b. For every ξ ∈ [a, b], then there exists
some η ∈ [a, b] for which:

f(ξ) = Pn−1(ξ) +
f (n)(η)

n!

n∏
k=1

(ξ − xk)
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Proof. Notice that we may re-write f(x) as:

f(x) = P (x) +M(x)
n∏
k=1

(x− xk), M(x) =
f(x)− P (x)∏n
k=1(x− xk)

.

Based on that, introduce:

P̂ (x) = Pn−1(x) +M(ξ)
n∏
k=1

(x− xk)

By construction, at x = ξ, we have P̂ (ξ) = f(ξ). However, in general:

g(x) = f(x)− P̂ (x)

= f(x)− Pn−1(x)−M(ξ)
n∏
k=1

(x− xk).

Let us make some observations about the function g(x):

(i) g(x1) = g(x2) = . . . = g(xn) = 0 and g(ξ) = 0.

(ii) g(n)(x) = f (n)(x)− n!M(ξ)

What we will do next is show that there exists some η ∈ [a, b] for which

g(n)(η) = 0. From (ii), this establishes M(ξ) = f (n)(η)
n!

, subsequently proving
the theorem. The following lemma, also called Rolle’s theorem, will come in
handy.

lemma 1. Let f(x) be a continuously differentiable function, i.e. the deriva-
tive f ′(x) exists and is a continuous function. Suppose that f(a) = 0 and
f(b) = 0 with b > a. Then, there exists an c ∈ [a, b] for which f ′(c) = 0.

Now looking at (i), we can apply the above lemma repetitively to obtain
what we desire. The function g(x) has at least n+1 roots. Using the lemma,
g′(x) has at least n roots. Then g(2)(x) has at least n− 1 roots. As we keep
going, g(n)(x) at least one root, call it η.
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The nice thing about the above theorem is that we can use bounds on the
derivatives of f to establish bounds on the interpolation error. Indeed,

|f(x)− Pn−1(x)| ≤ max
η∈[a,b]

∣∣∣∣f (x)(η)

n!

∣∣∣∣ max
x∈[a,b]

n∏
k=1

|x− xk|

In the above inequality, notice we have no control over the derivatives of the
function. That is fixed. However, we do have freedom in choosing the inter-
polation points. The question now is, how should we select the interpolation
so that we minimize:

max
x∈[a,b]

n∏
k=1

|x− xk| .

Chebyshev polynomials and Chebyshev nodes To answer this ques-
tion, we must talk about Chebyshev polynomials. Chebhyshev polynomials
(of the first kind) are defined by:

Tk(x) = cos(k arccos(x)), k = 0, 1, 2 . . . (2)

Does not really look like a polynomial, doesn’t it? Well, it actually is. For
k = 0 and k = 1, the answers are trivial. Indeed T0(x) = 1, T1(x) = x. For
the general case, recall the high school formulas:

cos(α + β) = cos(α) cos(β)− sin(α) sin(β)

cos(α− β) = cos(α) cos(β) + sin(α) sin(β)

Combining the two, we obtain:

cos(α + β) = 2 cos(α) cos(β)− cos(α− β)

Set:
α = (k − 1) arccos(x), β = arccos(x)

to obtain the recursion:

Tk(x) = 2xTk−1(x)− Tk−2(x), T0(x) = 1, T1(x) = x. (3)

We can now use an inductive type of argument to verify that Tk(x) are indeed
polynomials. What is so ineresting about Chebyshev polynomials. Well..
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many things, but for now we are interested in the roots of the chebyshev
polynomials. The roots of Tn(x) are given by

xi = cos

(
(2i− 1)π

2n

)
, for i = 1, . . . n

The roots are interesting because of the following result.

Theorem 4. The roots of the Chebyshev polynomial Tn(x) minimize:

min
x1,x2,...,xn∈[a,b]

max
x∈[a,b]

n∏
k=1

|x− xk|

Proof. Let xi = cos
(

(2i−1)π
2k

)
for i = 1, . . . , n. Then:

n∏
i=1

(x− xi) =
n∏
i=1

(x− cos

(
(2i− 1)π

2k

)
) =

1

2n−1
Tn(x)

Notice that Tn(x̂l) = (−1)l at x̂l = cos
(
lπ
n

)
for l = 0, . . . , n. These are the

n+ 1 locations were Tn attains its extremal values. Our claim is that:

min
x1,x2,...,xn∈[a,b]

max
x∈[a,b]

n∏
k=1

|x− xk| =
n∏
i=1

∣∣∣∣x− cos

(
(2i− 1)π

2n

)∣∣∣∣
=

1

2n−1
|Tn(x)|

≤ 1

2n−1

We will use contradiction to verify this claim. Assume that there exists
another set of nodes for which maxx∈[a,b]

∏n
k=1 |x− xk| is minimized. Call

the polynomial associated with those nodes P (x). By definition it must be
that |P (x)| < 1

2n−1 . Consider the difference between these polynomials:

E(x) =
1

2n−1
Tn(x)− P (x)

Since |P (x)| < 1
2n−1 , we have:

(−1)lE(xl) > 0 for l = 0, . . . , n

This means that E(x) has (at least) n roots. But this is contradiction because
degree of E(x) (the leading terms cancel!) n− 1 (hence it cannot have more
than n− 1 roots).
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It may be surprising to you that the optimal interpolation points are not
equispaced. In fact, choosing equispaced samples are a terrible choice. The
sequence of polynomials interpolations at the Chebyshev zeros, which have
a higher density of points concentrated at the edges, does a better job. As
a matter of fact, if the underlying function satisfies some basic “smoothness
properties”, then convergence is gauranteed.
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