
Section 4: Least squares

March 21, 2019

1 Least squares approximation of functions

We have discussed basic polynomial interpolation now. But as we have men-
tioned before, there are other means of approximating functions that do not
involve any interpolation (at least, directly). One popular approach, due to
its ease in solvability, is to find the nearest function within some given basis1

in the least squares sense.

Let us elaborate on this a bit further. Suppose we are given a bunch of
functions φ1(x), φ2(x), ..., φn(x). The idea is to take linear combinations of
these functions to express more complicated functions. That is,

fn(x) =
n∑

k=1

akφk(x)

We can use fn(x) as a means to approximate some “target” function f(x).
To express the error between fn(x) and f(x), the following cost criteria can
be used:

E(a) =

∫ b

a

w(x)

(
f(x)−

n∑
k=1

akφk(x)

)2

dx (1)

where a = (a1, a2, . . . , an) are the coefficients that characterize fn(x). The
function w(x) > 0 is a weighting function. One can simply choose w(x) = 1

1Keep in mind that I am using the word basis somewhat loosely here.

1

where every point in the domain is weighted evenly, or choose to penalize
certain parts of the domain more heavily. Regardless, after choosing the
weighting, the end goal is to minimize the function in (1) over all possible
choices:

E = min
a∈Rn

E(a).

2

Matrix re-formulation We are going to rewrite the expression (1) in a
convenient matrix notation which will be useful for later.

E =

∫ b

a

w(x)

(
f(x)−

n∑
k=1

akφk(x)

)2

dx

=

∫ b

a

w(x)

f(x)−
[
φ1(x) · · · φn(x)

] a1...
an




2

dx

=

∫ b

a

w(x)

f(x)−
[
φ1(x) · · · φn(x)

] a1...
an




2

dx

=

∫ b

a

w(x)

f(x)−
[
φ1(x) · · · φn(x)

] a1...
an




T

f(x)−
[
φ1(x) · · · φn(x)

] a1...
an


 dx

=

∫ b

a

w(x)

f(x)−
[
a1 · · · an

] φ1(x)
...

φn(x)




f(x)−
[
φ1(x) · · · φn(x)

] a1...
an


 dx

=

∫ b

a

w(x)f 2(x)dx− 2

∫ b

a

w(x)f(x)
[
φ1(x) · · · φn(x)

] a1...
an

 dx+

∫ b

a

w(x)
[
a1 · · · an

]
φ1(x)

...
φn(x)

 [φ1(x) · · · φn(x)
]
a1...
an

 dx
=

∫ b

a

w(x)f 2(x)dx− 2
[∫ b

a
w(x)f(x)φ1(x)dx · · ·

∫ b

a
w(x)f(x)φn(x)dx

]a1...
an

+

[
a1 · · · an

] 
∫ b

a
w(x)φ1(x)φ1(x)dx · · ·

∫ b

a
w(x)φn(x)φ1(x)dx

...
...∫ b

a
w(x)φn(x)φ1(x)dx · · ·

∫ b

a
w(x)φn(x)φn(x)dx


a1...
an


3

We end up with the expression:

E(a) = aTSa− 2dTa+ c (2)

where:

S =


∫ b

a
w(x)φ1(x)φ1(x)dx · · ·

∫ b

a
w(x)φn(x)φ1(x)dx

...
...∫ b

a
w(x)φn(x)φ1(x)dx · · ·

∫ b

a
w(x)φn(x)φn(x)dx


d =


∫ b

a
w(x)f(x)φ1(x)dx

...∫ b

a
w(x)f(x)φn(x)dx


c =

∫ b

a

w(x)f 2(x)dx

This is called a quadratic form.

Quadratic forms and positive definite matrices. Remember, our end
goals was to find a ∈ Rn which minimizes the quadratic form (2). For that
purpose let us apply some tricks we have learned in Gaussian elimination.

E(a) = aTSa− 2dTa+ c

=
[
aT 1

] [S −d
−dT c

] [
aT

1

]
=

([
aT 1

] [I 0
−dTS−1 1

])([
I 0

dTS−1 1

] [
S −d
−dT c

])[
a
1

]
=

[
aT − dTS−1 1

] [S −d
0 c− dTS−1d

] [
a
1

]
=

[
aT − dTS−1 1

]([S −d
0 c− dTS−1d

] [
I S−1d

1

])([
I −S−1d

1

] [
a
1

])
=

[
(a− S−1d)T 1

] [S 0
0 c− dTS−1d

] [
a− S−1d

1

]
= (a− S−1d)TS(a− S−1d) + c− dTS−1d

We may have done something potentially in the above derivation. For in-
stance, does the inverse of S even exist!? Obviously, the answer is yes,

4

otherwise we would not make you go through the pain of this derivation. We
have the following result.

Theorem 1. Let φ1(x), φ2(x), ..., φn(x) be a set of linearly independent
functions. Then the inverse of S exists, and

E = min
a∈Rn

E(a)

is uniquely solved by a = S−1d.

Proof. If S is not invertible, then there must exist some vector a 6= 0 for
which Sa = 0, hence also aTSa = 0. We will show that this is not possible
if φ1(x), φ2(x), ..., φn(x) are linearly independent. First of all, observe that
for any a ∈ Rn:

aTSa =
[
a1 · · · an

] 
∫ b

a
w(x)φ1(x)φ1(x)dx · · ·

∫ b

a
w(x)φn(x)φ1(x)dx

...
...∫ b

a
w(x)φn(x)φ1(x)dx · · ·

∫ b

a
w(x)φn(x)φn(x)dx


a1...
an


=

∫ b

a

w(x)
[
a1 · · · an

]
φ1(x)

...
φn(x)

 [φ1(x) · · · φn(x)
]
a1...
an

 dx
=

∫ b

a

w(x)

[a1 · · · an
] φ1(x)

...
φn(x)



[φ1(x) · · · φn(x)

] a1...
an


 dx

=

∫ b

a

w(x)

(
n∑

k=1

akφk(x)

)(
n∑

k=1

akφk(x)

)
dx

=

∫ b

a

w(x)

(
n∑

k=1

akφk(x)

)2

dx

≥ 0.

The last conclusion follows from the fact that w(x) ≥ 0 and:(
n∑

k=1

akφk(x)

)2

≥ 0.

5

In fact aTSa = 0, only if:
n∑

k=1

akφk(x) = 0

Since φ1(x), φ2(x), ..., φn(x) are linearly independent, this can happen only
when a = 0, thereby confirming that S has to be invertible. Now to show
that a = S−1d, notice in the formula that in the expression

E(a) = (a− S−1d)TS(a− S−1d) + c− dTS−1d

the term (a−S−1d)TS(a−S−1d) ≥ 0 and only equal to zero when a−S−1d =
0, the other is a constant for which we dont have any control over.

Discrete least squares Most likely, in your linear algebra classes you
looked at a different type of least squares problem. Something of the form:

E = min
x∈Rn

‖b− Ax‖22 (3)

where A ∈ Rm×n, where typically m >> n (i.e. an overdetermined system).
The expression (1) can be reduced to this problem.

Dirac delta function:

w(x) =
m∑
k=1

δ(x− xi)

6

E(a) =

∫ b

a

w(x)

(
f(x)−

n∑
k=1

akφk(x)

)2

dx

=

∫ b

a

m∑
k=1

δ(x− xi)

(
f(x)−

n∑
k=1

akφk(x)

)2

dx

=

∫ b

a

m∑
k=1

δ(x− xi)

(
f(x)−

n∑
k=1

akφk(x)

)2

dx

=
m∑
k=1

∫ b

a

δ(x− xi)

(
f(x)−

n∑
k=1

akφk(x)

)2

dx


=

m∑
k=1

(
f(xi)−

n∑
k=1

akφk(xi)

)2

=

∥∥∥∥∥∥∥
f(x1)−

∑n
k=1 akφk(x1)
...

f(xn)−
∑n

k=1 akφk(xn)


∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥
f(x1)

...
f(xn)

−
φ1(x1) · · · φn(x1)

...
...

φ1(xn) · · · φn(xn)


a1...
an


∥∥∥∥∥∥∥
2

From here one can derive the quadratic form again and repeat the same
procedure as before. The familiar x = (ATA)−1Ab would have been obtained.
There is another way of solving the least squares which is numerically more
preferred. This is what we will discuss next.

2 QR factorization

Let A ∈ Rm×n be a matrix with m > n (i.e. a tall matrix), then:

A = Q

[
R
0

]
(4)

7

where Q ∈ Rm×m is a orthonormal matrix (QTQ = QQT = I) and Rn×n

is an upper triangular matrix. Like a lot linear algebra, this factorization
of a matrix is named after the symbols which are typically used to express
them: the QR factorization. Sometimes, the matrix Q =

[
Q1 Q2

]
, where

Q1 ∈ Rn×n

QR factorizaton and least squares. The QR factorization is useful for
solving least squares problems. Consider again the discrete least squares
problem:

E = min
x∈Rn

‖b− Ax‖2

If Q denotes the orthogonal matrix associated with QR factorization of A,
i.e. as in (4), then we can perform the following manipulations:

E = min
x∈Rn

‖b− Ax‖22

= min
x∈Rn

(b− Ax)T (b− Ax)

= min
x∈Rn

(b− Ax)TQQT (b− Ax)

= min
x∈Rn

(QT (b− Ax))T (QT (b− Ax))

= min
x∈Rn

(
QT b−

[
R
0

]
x

)T (
QT b−

[
R
0

]
x

)
= min

x∈Rn

(
QT b−

[
Rx
0

])T (
QT b−

[
Rx
0

])

Now split:

QT b =

[
b̂1
b̂2

]
We may continue:

E = min
x∈Rn

([
b̂1
b̂2

]
−
[
Rx
0

])T ([
b̂1
b̂2

]
−
[
Rx
0

])
=

(
b̂1 −Rx

)T (
b̂1 −Rx

)
+ b̂T2 b̂2

=
∥∥∥Rx− b̂1∥∥∥2 +

∥∥∥b̂2∥∥∥2
8

Now the last expression is interesting! Through the QR factorization, we
were able to transform the square of the cost function to:

E =
∥∥∥Rx− b̂1∥∥∥2 +

∥∥∥b̂2∥∥∥2
This is something we can solve. Under very mild conditions on the matrix
A, R will turn out to be an invertible matrix. The first term can therefore
be set to zero and this our solution the least squares probem.

The Gram schmidt process. To someone who is already familiar to the
Gram schmidt process (and if you are not, you will be learning it now!), the
QR factorization should not appear as some new concept. Let ~a1, . . . ,~am ∈
Rn denote the columns of A ∈ Rn×m. We see that:

[
~a1 ~a2 · · · ~am

]
=
[
~q1 · · · ~qm ~qm+1 · · · ~qn

]


r11 · · · r1m
...

. . .
...

0 · · · rmm

0 · · · 0
...

. . .
...

0 · · · 0


where ~q1, . . . , ~qn ∈ Rn are the orthonormal columns of Q. The above is
equivalent to:

~a1 = r11~q1

~a2 = r12~q1 + r22~q2
...

~am = r1m~q1 + r2m~q2 + . . .+ rmm~qm

In other words, the QR factorization just re-expresses the columns of A in
terms of an orthonormal basis. Such a basis can be obtained from the Gram-
Schmidt process.

To introduce the Gram-Schmidt process, define the inner product as:

〈~x, ~y〉 := ~xT~y =
n∑

k=1

xkyk (5)

9

and observe that:

‖x‖2 = 〈~x, ~x〉 = ~xT~x =
n∑

k=1

x2k (6)

One must understand that the inner product generalizes the notion of angles
between vectors. Indeed, when the dimension of the space is 3, we have that
〈~x, ~y〉 ≡ x · y, i.e. the familiar dot product. You may know from vector
calculus that:

x · y = ‖x‖ ‖y‖ cos θ

Hence,
〈~x, ~y〉
‖x‖ ‖y‖

quantifies angles between the vectors ~x and ~y. We are digressing a bit,
but this generalization is extremely valuable, because the definition of inner
products can also be extended also to functions. That is, you can interpret
functions as vectors and this allows us to construct, for instance, orthogonal
polynomials2

Anyway, to explain Gram schmidt in the simplest way possible, suppose we
have three vectors ~a1,~a2,~a3 ∈ R3 that span the entire space. We can use
these three vectors to construct an orthonormal basis ~q1, ~q2, ~q3 ∈ R3. Simply
call, ~q1 = 1

‖~a1‖~a1. To construct ~q2, note that it has to be orthogonal ~q1. First,
recognize that:

〈~a2, ~q1〉 ~q1 = Proj~q1~a2

is the orthogonal projection of ~a2 onto the one dimensional subspace spanned
by ~a1. and:

q̃2 = ~a2 − 〈~a2, ~q1〉 ~q1
is a vector which is orthogonal to ~q1. To normalize it, we simply do:

~q2 =
~q2
‖q̃2‖

.

This gives us the second vector we need. To find the third, we apply the
same ideas:

q̃3 = ~a3 − 〈~a3, ~q1〉 ~q1 − 〈~a3, ~q2〉 ~q2
= ~a3 − Proj~q1~a3 − Proj~q2~a3

2We have already seen one type of orthogonal polynomials in our lectues, the Chebyshev
polynomials.

10

Normalizing: ~q3 = q̃3/‖q̃3‖ provides us the third orthogonal vector.

Let us generalize this. Suppose we are now given a bunch of vectors ~a1, . . . ,~am ∈
Rn that span some subspace in Rn. The Gram Schmidt process for m vectors
is descibed by:

~q1 =
q̃1
‖q̃1‖

, q̃1 = ~a1

~q2 =
q̃2
‖q̃2‖

, q̃2 = ~a2 − 〈~q1,~a2〉 ~q1

...

~qm =
q̃m
‖q̃m‖

, q̃m = ~am −
m−1∑
k=1

〈~qk,~am〉 ~qk

The vectors q1, . . ., qm are the first m columns of Q. You may ask, what are
the entries of R? Notice that:

~q1 =
1

r11
~a1

~q2 =
1

r22
(~a2 − r12~q1)

...

~qm =
1

rmm

(
~am − (r1m~q1 + r2m~q2 + . . .+ r(m−1)m~qm−1

)
We see that:

rij =

{
‖q̃i‖ i = j

〈~qi,~aj〉 i 6= j
(7)

11

In matrix notation, the Gram-Schmidt process can be described as follows:

A =
[
~a1 ~a2 · · · ~am

]
=

[~a1 ~a2 · · · ~am
]


1
r11

1
. . .

1




r11

1
. . .

1



=
[
~q1 ~a2 · · · ~am

]

r11

1
. . .

1



=

[~q1 ~a2 · · · ~am
]


1 − r21
r22
1
r22

. . .

1






1 r21
r22

. . .

1



r11

1
. . .

1




=
[
~q1 ~q2 · · · ~am

]

r11 r21

r22
. . .

1


Etcetera. The matrix A is slowly transformed into a matrix with orthonormal
columns through multiplication by upper triangular “Gauss“-like transforms
from the right. A direct implementation of this process is however numeri-
cally unstable. There are ways to stabilize it (also known as modified Gram
Schmidt) though, but we will look into a different method of obtaining the
QR factorization.

Householder’s algorithm. As we have observed, the Gram Schmidt algo-
rithm obtains the QR factorization by a sequence triangular transformations
from the right. This converts the A matrix slowly into an orthogonal matrix.
Alternatively, we may choose to convert A matrix into an upper triangular
matrix, by a sequence of orthonormal transformations from the left:

Qn · · ·Q1A = R.

This fundamental shift in perspective gives rise to Householder’s algorithm.

12

The nice thing about this algorithm is that the columns of A are multiplied by
orthonormal matrices. This is numerically desirable (although not completely
free of pit-falls!) because the multiplication by orthonormal matrices are well
conditioned operations (the condition number is in fact equal to one). To
build a mental model of what the Householder algorithm does, assume:

A =


× × ×
× × ×
× × ×
× × ×
× × ×


The sequence of transformation introduce the following zeros:

Q1A =


× × ×
0 × ×
0 × ×
0 × ×
0 × ×

 , Q2Q1A =


× × ×
0 × ×
0 0 ×
0 0 ×
0 0 ×

 , Q3Q2Q1A =


× × ×
0 × ×
0 0 ×
0 0 0
0 0 0


What is left for us to figure out how to pick the matrices Q1, Q2, Q3. This
is where we need the concept of a Householder transform, or a reflection
matrix. But before that, recall that multiplying a vector by an orthonormal
matrix Q ∈ Rn×n always preserves length of that vector. Indeed,

‖Qx‖2 = xTQTQx = xTx = ‖x‖2 .

A specific geometric operation on a vector which preserves length is a reflec-
tion. For example, consider the vector x ∈ Rn, and suppose we would like to
reflect it accross the hyper-plane:

Hv :=
{
x ∈ Rn | xTv = 0

}
, ‖v‖ = 1 (8)

The appropriate matrix which does that job is given by:

Q(v) = I − 2vvT (9)

This is called a Householder transform. Now let us look at the first column
of A, i.e. ~a1. For our first Householder transform, we clearly want to choose

13

our unit vector v ∈ Rn in such a way so that Q(v)~a1 = ‖~a1‖ e1, where

e1 =
[
1 0 · · · 0

]T
. This is achieved by simply setting:

v =
ṽ

v
, ṽ = ‖~a1‖ e1 − ~a1.

Our first Gauss transform is Q1 = Q(‖~a1‖ e1−~a1/ ‖‖~a1‖ e1 − ~a1|). But what
about all the others? Let us look at the process general.

In general, we start with:

A =


a11 a12 a13 · · · a1m
a21 a22 a23 · · · a2m
a31 a32 a33 · · · a3m
...

...
...

. . .
...

an1 an2 an3 · · · anm


After the first Householder transform Q1 = Q(‖~a1‖ e1 − ~a1/ ‖‖~a1‖ e1 − ~a1|),
we see that:

Q1A =


r11 r12 r13 · · · r1n

0 a
(1)
22 a

(1)
23 · · · a

(1)
2m

0 a
(1)
32 a

(1)
33 · · · a

(1)
3m

0
...

...
. . .

...

0 a
(1)
n2 a

(1)
n3 · · · a

(1)
nm


Define: ~a

(1)
1 =

[
a
(1)
22 a

(1)
22 · · · a

(1)
n2

]T
The second householder transform is:

Q2 =

[
1 0

0 Q(
∥∥∥~a(1)1

∥∥∥ e1 − ~a(1)1 /
∥∥∥∥∥∥~a(1)1

∥∥∥ e1 − ~a(1)1

∥∥∥)

]
Which gives:

Q2Q1A =


r11 r12 r13 · · · r1m
0 r22 r23 · · · r2m

0 0 a
(2)
33 · · · a

(2)
3m

0
...

...
. . .

...

0 0 a
(2)
n3 · · · a

(2)
nm


I believe it should be clear how to continue the process untill A is turned
into a triangular matrix.

14

Making Householder’s algorithm stable. What we left out in the pre-
vious discussion, is that there are two ways of using Householder reflections.
For our first Householder transform (the same applies however to all of them),
we can either reflect the vector ~a1 (the first column of the matrix) to the po-
sition ‖~a1‖ e1 or −‖~a1‖ e1. Both are mathematically equivalent. One of
them is however better numerically. If the vector ~a1 is close to ‖~a1‖ e1, then
v = ‖~a1‖ e1 − ~a1 may end up suffering from catastrophic cancellations. In
that situation, it is better to reflect it to the other direction. A simple mech-
anism to avoid such things from happening is to apply following rule. Let ~a
be a vector which want to reflect into ±e1 direction. Then:

• if the first entry of ~a is greater then zero, reflect to −e1

• if the first entry of ~a is less then zero, reflect to +e1

solving least-squares problems using householder When solving least
squares problems using there is no need to explicitly constuct the Q matrix.
Simply apply the transformations Q1 to Qn directly.

Qn · · ·Q2Q1Ax = Qn · · ·Q2Q1b[
R
0

]
x =

[
b̃1
b̃2

]
And after that, it should be clear what to do next.

15

