
Section 6: The Discrete Fourier Transform

May 1, 2019

The central object of discussion in this section is the so-called Discrete Fourier
Transform. The DFT is one of four types of Fourier transforms which to-
gether form the basis of a much more richer subject generally going under the
name of Fourier analysis. In Fourier analysis, one is interested in how func-
tions can be decomposed or approximated by sums of simpler trigonometric
functions. Historically, this subject arose from the study of Fourier series
(one the other variants of Fourier transforms), and is named after Joseph
Fourier, who showed that representing a function as a sum of trigonomet-
ric functions greatly simplifies the solution of the heat equation. Nowadays,
Fourier analysis plays a central role in many practical applications of sci-
ence and engineering. Its importance cannot be dismissed by almost every
technological device used by mankind today. A quick google search on the
applications of Fourier analysis should convince you why. For those who like
music (who doesn’t?) have a look here.

Nevertheless, this set of notes does not really intend looking into the applica-
tions of Fourier analysis in detail. Rather, we will be looking at the subject
from a more the computational/numerical analysis point of view. There are
in particular two goals in mind: a) describe what the DFT is in its bare
essence mathematically, and b) discuss the efficient computation of the DFT
through the Fast Fourier Transform algorithm. Keep in mind that to gain
a full awareness on the power of Fourier analysis, this piece of text simply
does not do justice to the richness of the underlying subject (there are many
textbooks that do a better job at this). You will get to learn this however

1

https://gizmodo.com/digital-music-couldnt-exist-without-the-fourier-transfo-1699155287


through the course of time as you inevitebly will encounter this subject again
in your other courses.

1 Preliminaries

Before we move on to the main topic, it is useful to discuss some preliminaries
first.

1.1 A quick refresher on complex number

Define: i :=
√
−1. A complex number z = a+ bi consist of a real part a and

an imaginary part b. The conjugate z̄ = a− bi of a complex z flips the sign
of the imaginary part while preserving the sign of the real part. By using
Euler’s famous formula:

eiθ = cos(θ) + i sin(θ)

we may write a complex number in terms of polar coordinates: z = reiθ,
where the two representation are related by r2 = a2 + b2 and tan(θ) = b

a
.

Complex conjugation z̄ = re−iθ in polar coordinates amounts to changing
the sign of the phase angle θ. All of these concepts should be familiar to you.

1.2 Matrix algebra with complex numbers

Notice it requires two parameters to describe a complex number. It is pos-
sible to write the multiplication of two complex numbers as matrix vector
multplication. Compare the following two expressions:

zw = (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i = (c+ di)(a+ bi) = wz

and [
ac− bd
ad+ bc

]
=

[
a −b
b a

] [
c
d

]
=

[
c −d
d d

] [
a
b

]

2



and notice the similarities. The above observations generalize to higher di-
mensions as well. Indeed, suppose that Z is a complex-valued matrix and w
is a complex valued vector. Writing Z = A+ iB and w = c+ id (with A,B
and c, d as real matrices and vectors), the following equivalence

Zw ≡
[
A −B
B A

] [
c
d

]
shows that matrix-vector multiplication of complex numbers can be written
as matrix-vector multiplies of real numbers.

1.3 Unitary matrices

In the complex field, the inner (or dot) product also undergoes a slight modi-
ficaion. If a, b are two complex valued vectors, then the dot product is defined
as:

〈a, b〉 := a∗b =
n∑
i=1

āibi

The notation a∗ denotes the conjugate transpose. In general, if A denotes a
m by n matrix then its conjugate A∗ is simply its transpose but with all its
entries conjugated in addition, e.g.a11 a12

a21 a22
a31 a32

∗

=

[
ā11 ā21 ā31
ā12 ā22 ā32

]
.

A unitary matrix U is a square complex-valued matrix whose conjugate trans-
pose is also his inverse. That is,

U∗U = UU∗ = I

Unitary matrices generalize the notion of orthogonal matrices. In the special
case when all entries of the unitary matrix are real, U necessarily becomes
an orthogonal matrix.

3



1.4 Trigonometric polynomials and orthogonality

Let:
pn(x) = c0 + c1x+ c2x

2 + . . .+ cnx
n

denote a degree n polynomial expressed in the monomial basis. Naturally,
this polynomial is defined for every complex number x ∈ C. Suppose we
restrict the domain of our polynomial to just the unit circle defined on the
complex plane. We can do this by the substitution:

x = ei2πθ,

where θ is the variable that parametrizes the unit circle. What we obtain is
a so-callled trigonometric polynomial:

Tn(θ) = pn(ei2πθ) = c0 + c1e
i2πθ + c2e

i2(2πθ) + . . .+ cne
in(2πθ)

The name trigonometric polynomial is in reference to Eulers formula e2πiθ =
cos(2πθ) + i sin(2πθ). When θ is allowed to range in R, trigonometric poly-
nomials are complex valued periodic functions (with period 1).

Note that trigonometric polynomials are not only generated from polynomi-
als. We can also consider negative exponents:

p−m,n(x) = c−mx
−m + . . .+ c−2x

−2 + c−1x
−1 + c0 + c1x+ c2x

2 + . . .+ cnx
n

A restriction to the unit circle would again yield a trigonometric polynomial:

T−m,n(θ) = c−me
−im(2πθ)+. . .+c−2e

−i2(2πθ)+c−1e
−i2πθ+c0+c1e

i2πθ+c2e
i2(2πθ)+. . .+cne

in(2πθ)

An interesting thing happens when we restrict these functions to the unit
circle on the complex plane. With respect to the inner product:

〈a(θ), b(θ)〉 :=

∫ 1

0

ā(θ)b(θ)dθ

The terms eik(2πθ) for k ∈ Z (i.e. integers) are orthonormal. This was not the
case when we for example restricted the monomial basis to the unit interval
[0, 1) on the real line.

4



2 The Definition of the DFT

Before we get into what the DFT does, let us first define it. Suppose we have
a complex-valued vector x ∈ Cn. You may think of this vector describing
some time signal sampled at a specific frequency, even though this context
is really not necessary to define the DFT. The DFT is simply the linear
transformation which maps x ∈ Cn to another vector x̂ ∈ Cn:

x̂[k] =
1√
n

n−1∑
l=0

e−
2πi
n
klx[k], k = 0, 1, . . . , n− 1.

This transformation is invertible, and the inverse is given by:

x[k] =
1√
n

n−1∑
l=0

e
2πi
n
klx̂[k], k = 0, 1, . . . , n− 1.

Call:
ωn = e−

2πi
n

In matrix notation, we may write the transform as:

x̂ = Fnx =
1√
n


1 1 1 · · · 1
1 ωn ω2

n · · · ωn−1
n

1 ω2
n ω4

n · · · ω
2(n−1)
n

...
...

...
. . .

...

1 ωn−1
n ω

2(n−1)
n · · · ω

(n−1)(n−1)
n




x[0]
x[1]
x[2]

...
x[n− 1]


Similarly the inverse transform is given by:

x = F−1
n x̂ =

1√
n


1 1 1 · · · 1
1 ω̄n ω̄2

n · · · ω̄n−1
n

1 ω̄2
n ω̄4

n · · · ω̄
2(n−1)
n

...
...

...
. . .

...

1 ω̄n−1
n ω̄

2(n−1)
n · · · ω̄

(n−1)(n−1)
n




x̂[0]
x̂[1]
x̂[2]

...
x̂[n− 1]


Notice that the inverse DFT formula looks very similar to the DFT itself. It
is, in fact, its conjugate transpose: conjugate transpose.

F−1
n = F ∗

n

The DFT is an unitary transformation.

5



3 What does the DFT describe?

There are many ways of deriving the DFT matrix. Here, we will take what
we have learned already about polynomial interpolation and go from there.

3.1 Derivation from the Vandermonde matrix

Recall the Vandermonde matrix associated with the monomial basis:
1 x1 x21 · · · xn−1

1

1 x2 x22 · · · xn−1
2

...
...

...
...

1 xn x2n · · · xn−1
n



a1
a2
...
an

 =


y1
y2
...
yn


We stated back then that if we picked our points x1, x2, . . . , xn uniquely, i.e.
without choosing the same point twice, this matrix would be invertible. Sub-
sequently, solving for the coefficient a1, a2, . . . , an would find us the unique
polynomial of degree n−1 interpolating the values y1, y2, . . . , yn at the points
x1, x2, . . . , xn. In topic of polynomial interpolation the points x1, x2, . . . , xn
were all assumed to lie to some interval on the real line. However, nobody
really is stopping us from choosing point on the complex plane!

Now suppose we choose the following points. Consider the equation:

xn = 1

This equation has solutions n solutions:

xk = ei
2π
n
(k−1), k = 1, . . . n.

Plugging in these points, referred to as roots of unity, into the Vandermonde
matrix yields:

Vn−1(1, e
i 2π
n , . . . , ei

2π
n
(n−1)) =

√
nF ∗

n

In other words, the DFT matrix will find us the coefficients for the unique
interpolating polynomial in the case when the interpolation points are the
roots of unity. However, thanks to Euler’s magnificent formula, we also have
another interpretation for the DFT in terms of trigonometric interpolation.

6



3.2 Trigonometric interpolation and aliasing

Suppose we have a function defined on a circle of length 1 (or equivalently
a periodic function on the real line with period 1). This (complex-valued)
function is sampled uniformly on the circle at let’s say θk = k

n
with values

yk for k = 0, 1, . . . , n − 1. If we would like to interpolate the following the
trigonometric polynomial through the sample/data points:

Tn−1(θ) =
√
n
[
c0 + c1e

2πiθ + c2e
2πi2θ + . . .+ cn−1e

2πi(n−1)θ
]

(1)

Then the coefficients c =
[
c0 c1 · · · cn−1

]T
are found by applying the

DFT:
c = Fny

where y =
[
y0 y1 · · · yn−1

]T
. Yes. It is true that this is the unique

trigonometric polynomial of degree n − 1 (i.e. a trigonometric polynomial
generated from polynomial of degree n − 1) that passes through all these n
points. But there is catch, it is not the only trigonometric poynomials which
fits the data exactly. Indeed, plugging in θ = k

n

√
n
[
c0 + c1e

2πi k
n + c2e

2πi2 k
n + . . .+ cn−1e

2πi(n−1) k
n

]
and observing that:

e2πil
k
n = e2πi(l+mn)

k
n , m ∈ Z

and rewriting:

√
n
[
c0e

2πim0n
k
n + c1e

2πi(1+m1n)
k
n + c2e

2πi(2+m2n)
k
n + . . .+ cn−1e

2πi(n−1+mn−1n)
k
n

]
shows that the data points could have as well been generated from the signal:

√
n
[
c0e

2πim0nθ + c1e
2πi(1+m1n)θ + c2e

2πi(2+m2n)θ + . . .+ cn−1e
2πi(n−1+mn−1n)θ

]
where m0,m1, . . . ,mn−1 ∈ Z can be chosen arbitrary.

There is an ambiguity. What he have just stumbled upon is the issue of
aliasing: if a continuous signal is sampled information will be lost. Recon-
structing the continuous signal from the data points will always give rise to

7



an ambiguity, i.e. there are abitrary ways of filling in the holes. Think for
example when a sinusoidal wave get undersampled. From a practical point
of view, it makes sense to associate always the lowest frequency signal to the
data points. This means that all the complex exponentials e2πikθ in (1) with
k > n/2 should actually be replaced with e−2πikθ

4 A fast algorithm for computing the DFT

Computing the DFT of a signal/vector requires evaluating a matrix vector
product. We know that this operation generally requires O(n2) operations,
with n being the size of signal/vector. For relatively small signals, this com-
plexity is manageable, but for most applications with quite large signals, it
can become prohibitely expensive to evaluate a DFT. The great news is that
the complexity can actually be improved to O(n log n) by exploited some
special structural properties of the DFT matrix. The fact that things may
be computed O(n log n) is also the reason why the DFT is so widely used.
The plethora of algorithms that give rise to this level of complexity is referred
to as Fast Fourier Transform.

Let us now describe the original FFT algorithm, as discovered by J. W.
Cooley and John Tukey. Examine the DFT associated with n = 8, i.e.

√
8F8x =



ω0·0
8 ω1·0

8 ω2·0
8 ω3·0

8 ω4·0
8 ω5·0

8 ω6·0
8 ω7·0

8

ω0·1
8 ω1·1

8 ω2·1
8 ω3·1

8 ω4·1
8 ω5·1

8 ω6·1
8 ω7·1

8

ω0·2
8 ω1·2

8 ω2·2
8 ω3·2

8 ω4·2
8 ω5·2

8 ω6·2
8 ω7·2

8

ω0·3
8 ω1·3

8 ω2·3
8 ω3·3

8 ω4·3
8 ω5·3

8 ω6·3
8 ω7·3

8

ω0·4
8 ω1·4

8 ω2·4
8 ω3·4

8 ω4·4
8 ω5·4

8 ω6·4
8 ω7·4

8

ω0·5
8 ω1·5

8 ω2·5
8 ω3·5

8 ω4·5
8 ω5·5

8 ω6·5
8 ω7·5

8

ω0·6
8 ω1·6

8 ω2·6
8 ω3·6

8 ω4·6
8 ω5·6

8 ω6·6
8 ω7·6

8

ω0·7
8 ω1·7

8 ω2·7
8 ω3·7

8 ω4·7
8 ω5·7

8 ω6·7
8 ω7·7

8





x[0]
x[1]
x[2]
x[3]
x[4]
x[5]
x[6]
x[7]


Let us now re-order the columns of F8 by first placing the odd columns next to
each other and then all the even columns. The permutation matrix required

8



for this is:

P8 =



1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1


Notice what we get:

(
√

8F8P8)(P
T
8 x) =



ω0·0
8 ω2·0

8 ω4·0
8 ω6·0

8 ω1·0
8 ω3·0

8 ω5·0
8 ω7·0

8

ω0·1
8 ω2·1

8 ω4·1
8 ω6·1

8 ω1·1
8 ω3·1

8 ω5·1
8 ω7·1

8

ω0·2
8 ω2·2

8 ω4·2
8 ω6·2

8 ω1·2
8 ω3·2

8 ω5·2
8 ω7·2

8

ω0·3
8 ω2·3

8 ω4·3
8 ω6·3

8 ω1·3
8 ω3·3

8 ω5·3
8 ω7·3

8

ω0·4
8 ω2·4

8 ω4·4
8 ω6·4

8 ω1·4
8 ω3·4

8 ω5·4
8 ω7·4

8

ω0·5
8 ω2·5

8 ω4·5
8 ω6·5

8 ω1·5
8 ω3·5

8 ω5·5
8 ω7·5

8

ω0·6
8 ω2·6

8 ω4·6
8 ω6·6

8 ω1·6
8 ω3·6

8 ω5·6
8 ω7·6

8

ω0·7
8 ω2·7

8 ω4·7
8 ω6·7

8 ω1·7
8 ω3·7

8 ω5·7
8 ω7·7

8





x[0]
x[2]
x[4]
x[6]
x[1]
x[3]
x[5]
x[7]



=




ω0·0
4 ω1·0

4 ω2·0
4 ω3·0

4

ω0·1
4 ω1·1

4 ω2·1
4 ω3·1

4

ω0·2
4 ω1·2

4 ω2·2
4 ω3·2

4

ω0·3
4 ω1·3

4 ω2·3
4 ω3·3

4



ω0
8

ω1
8

ω2
8

ω3
8



ω0·0
4 ω1·0

4 ω2·0
4 ω3·0

4

ω0·1
4 ω1·1

4 ω2·1
4 ω3·1

4

ω0·2
4 ω1·2

4 ω2·2
4 ω3·2

4

ω0·3
4 ω1·3

4 ω2·3
4 ω3·3

4


ω0·0
4 ω1·0

4 ω2·0
4 ω3·0

4

ω0·1
4 ω1·1

4 ω2·1
4 ω3·1

4

ω0·2
4 ω1·2

4 ω2·2
4 ω3·2

4

ω0·3
4 ω1·3

4 ω2·3
4 ω3·3

4

 −


ω0
8

ω1
8

ω2
8

ω3
8



ω0·0
4 ω1·0

4 ω2·0
4 ω3·0

4

ω0·1
4 ω1·1

4 ω2·1
4 ω3·1

4

ω0·2
4 ω1·2

4 ω2·2
4 ω3·2

4

ω0·3
4 ω1·3

4 ω2·3
4 ω3·3

4








x[0]
x[2]
x[4]
x[6]


x[1]
x[3]
x[5]
x[7]




In condensed form:

(
√

8F8P8)(P
T
8 x) =

[√
4F4 Ω4(

√
4F4)√

4F4 −Ω4(
√

4F4)

] [
xodd
xeven

]
, Ω4 =


ω0
8

ω1
8

ω2
8

ω3
8


The shenanigans we did above is not only applicable to n = 8, but for any n
divisible by 2. In general, we have:

(
√
nFnPn)(P T

n x) =

[√
n/2Fn/2 Ωn/2(

√
n/2Fn/2)√

n/2Fn/2 −Ωn/2(
√
n/2Fn/2)

] [
xodd
xeven

]
(2)

9



where:

Ωn/2 =


ω0
2n

ω1
2n

. . .

ωn−1
2n


is often referred to as the “twiddle factors”. Let us consider the significance of
what has just been derived. Suppose for some reason we were already given
(by God?) on our plate the DFT’s Fn/2xodd and Fn/2xeven in our hands.
Equation (2) tells us that with little effort we can reconstruct DFT Fnx
from those smaller DFTs. In O(n) operations to be exact. Indeed, Ωn/2 is a
diagonal matrix after all.

We can exploit this property to design a fast algorithm to evaluate the DFT.
For the special case when n = 2N , we can repeatedly apply (2) until we have
divided the vector x into its scalar component. The DFT can be assembled
from those basic components. There are N such assemblies in total. Each
assembly will take O(n). So overall, we have O(nN) or O(n log n) operation.
This is so much faster than O(n2). As you already know, it is even faster
than O(n1+ε) for any ε > 0.

5 Convolution

10


	Preliminaries
	A quick refresher on complex number
	Matrix algebra with complex numbers
	Unitary matrices
	Trigonometric polynomials and orthogonality

	The Definition of the DFT
	What does the DFT describe?
	Derivation from the Vandermonde matrix
	Trigonometric interpolation and aliasing

	A fast algorithm for computing the DFT
	Convolution

